svhn.py 4.49 KB
Newer Older
1
from __future__ import print_function
2
from .vision import VisionDataset
3
4
5
6
from PIL import Image
import os
import os.path
import numpy as np
7
from .utils import download_url, check_integrity, verify_str_arg
8

soumith's avatar
soumith committed
9

10
class SVHN(VisionDataset):
11
    """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset.
12
13
14
    Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset,
    we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which
    expect the class labels to be in the range `[0, C-1]`
15

16
17
18
19
    .. warning::

        This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
    Args:
        root (string): Root directory of dataset where directory
            ``SVHN`` exists.
        split (string): One of {'train', 'test', 'extra'}.
            Accordingly dataset is selected. 'extra' is Extra training set.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
34
35
36
37
38
39
40
41
42

    split_list = {
        'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat",
                  "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"],
        'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat",
                 "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"],
        'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat",
                  "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]}

43
44
45
46
    def __init__(self, root, split='train', transform=None, target_transform=None,
                 download=False):
        super(SVHN, self).__init__(root, transform=transform,
                                   target_transform=target_transform)
47
        self.split = verify_str_arg(split, "split", tuple(self.split_list.keys()))
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        self.url = self.split_list[split][0]
        self.filename = self.split_list[split][1]
        self.file_md5 = self.split_list[split][2]

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        # import here rather than at top of file because this is
        # an optional dependency for torchvision
        import scipy.io as sio

        # reading(loading) mat file as array
moskomule's avatar
moskomule committed
64
        loaded_mat = sio.loadmat(os.path.join(self.root, self.filename))
65
66

        self.data = loaded_mat['X']
67
        # loading from the .mat file gives an np array of type np.uint8
vabh's avatar
vabh committed
68
        # converting to np.int64, so that we have a LongTensor after
69
70
71
        # the conversion from the numpy array
        # the squeeze is needed to obtain a 1D tensor
        self.labels = loaded_mat['y'].astype(np.int64).squeeze()
vabh's avatar
vabh committed
72

73
        # the svhn dataset assigns the class label "10" to the digit 0
vabh's avatar
vabh committed
74
        # this makes it inconsistent with several loss functions
75
        # which expect the class labels to be in the range [0, C-1]
vabh's avatar
vabh committed
76
        np.place(self.labels, self.labels == 10, 0)
77
78
79
        self.data = np.transpose(self.data, (3, 2, 0, 1))

    def __getitem__(self, index):
80
81
82
83
84
85
86
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
87
        img, target = self.data[index], int(self.labels[index])
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.data)

    def _check_integrity(self):
        root = self.root
        md5 = self.split_list[self.split][2]
        fpath = os.path.join(root, self.filename)
soumith's avatar
soumith committed
108
        return check_integrity(fpath, md5)
109
110

    def download(self):
soumith's avatar
soumith committed
111
112
        md5 = self.split_list[self.split][2]
        download_url(self.url, self.root, self.filename, md5)
113

114
115
    def extra_repr(self):
        return "Split: {split}".format(**self.__dict__)