_utils.py 8.4 KB
Newer Older
Nicolas Hug's avatar
Nicolas Hug committed
1
2
from __future__ import annotations

3
import collections.abc
vfdev's avatar
vfdev committed
4
import numbers
5
6
from contextlib import suppress

Nicolas Hug's avatar
Nicolas Hug committed
7
8
9
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union

import PIL.Image
10
import torch
11

Nicolas Hug's avatar
Nicolas Hug committed
12
13
14
15
from torchvision import datapoints

from torchvision._utils import sequence_to_str

16
from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size  # noqa: F401
Nicolas Hug's avatar
Nicolas Hug committed
17
from torchvision.transforms.v2.functional import get_dimensions, get_size, is_pure_tensor
18
from torchvision.transforms.v2.functional._utils import _FillType, _FillTypeJIT
19

vfdev's avatar
vfdev committed
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]:
    if not isinstance(arg, (float, Sequence)):
        raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}")
    if isinstance(arg, Sequence) and len(arg) != req_size:
        raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}")
    if isinstance(arg, Sequence):
        for element in arg:
            if not isinstance(element, float):
                raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}")

    if isinstance(arg, float):
        arg = [float(arg), float(arg)]
    if isinstance(arg, (list, tuple)) and len(arg) == 1:
        arg = [arg[0], arg[0]]
    return arg


38
def _check_fill_arg(fill: Union[_FillType, Dict[Union[Type, str], _FillType]]) -> None:
vfdev's avatar
vfdev committed
39
    if isinstance(fill, dict):
40
        for value in fill.values():
vfdev's avatar
vfdev committed
41
42
43
            _check_fill_arg(value)
    else:
        if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)):
44
            raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.")
vfdev's avatar
vfdev committed
45
46


47
def _convert_fill_arg(fill: _FillType) -> _FillTypeJIT:
48
49
50
51
52
53
54
55
56
    # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517
    # So, we can't reassign fill to 0
    # if fill is None:
    #     fill = 0
    if fill is None:
        return fill

    if not isinstance(fill, (int, float)):
        fill = [float(v) for v in list(fill)]
57
    return fill  # type: ignore[return-value]
58
59


60
def _setup_fill_arg(fill: Union[_FillType, Dict[Union[Type, str], _FillType]]) -> Dict[Union[Type, str], _FillTypeJIT]:
vfdev's avatar
vfdev committed
61
62
63
    _check_fill_arg(fill)

    if isinstance(fill, dict):
64
65
66
        for k, v in fill.items():
            fill[k] = _convert_fill_arg(v)
        return fill  # type: ignore[return-value]
67
68
    else:
        return {"others": _convert_fill_arg(fill)}
vfdev's avatar
vfdev committed
69

70
71
72
73
74
75
76
77

def _get_fill(fill_dict, inpt_type):
    if inpt_type in fill_dict:
        return fill_dict[inpt_type]
    elif "others" in fill_dict:
        return fill_dict["others"]
    else:
        RuntimeError("This should never happen, please open an issue on the torchvision repo if you hit this.")
vfdev's avatar
vfdev committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92


def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None:
    if not isinstance(padding, (numbers.Number, tuple, list)):
        raise TypeError("Got inappropriate padding arg")

    if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]:
        raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple")


# TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums)
# https://github.com/pytorch/vision/issues/6250
def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None:
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
93
94
95
96
97
98
99


def _find_labels_default_heuristic(inputs: Any) -> torch.Tensor:
    """
    This heuristic covers three cases:

    1. The input is tuple or list whose second item is a labels tensor. This happens for already batched
Nicolas Hug's avatar
Nicolas Hug committed
100
       classification inputs for MixUp and CutMix (typically after the Dataloder).
101
102
103
104
105
106
107
108
109
110
111
112
113
    2. The input is a tuple or list whose second item is a dictionary that contains the labels tensor
       under a label-like (see below) key. This happens for the inputs of detection models.
    3. The input is a dictionary that is structured as the one from 2.

    What is "label-like" key? We first search for an case-insensitive match of 'labels' inside the keys of the
    dictionary. This is the name our detection models expect. If we can't find that, we look for a case-insensitive
    match of the term 'label' anywhere inside the key, i.e. 'FooLaBeLBar'. If we can't find that either, the dictionary
    contains no "label-like" key.
    """

    if isinstance(inputs, (tuple, list)):
        inputs = inputs[1]

Nicolas Hug's avatar
Nicolas Hug committed
114
    # MixUp, CutMix
115
    if is_pure_tensor(inputs):
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        return inputs

    if not isinstance(inputs, collections.abc.Mapping):
        raise ValueError(
            f"When using the default labels_getter, the input passed to forward must be a dictionary or a two-tuple "
            f"whose second item is a dictionary or a tensor, but got {inputs} instead."
        )

    candidate_key = None
    with suppress(StopIteration):
        candidate_key = next(key for key in inputs.keys() if key.lower() == "labels")
    if candidate_key is None:
        with suppress(StopIteration):
            candidate_key = next(key for key in inputs.keys() if "label" in key.lower())
    if candidate_key is None:
        raise ValueError(
            "Could not infer where the labels are in the sample. Try passing a callable as the labels_getter parameter?"
            "If there are no labels in the sample by design, pass labels_getter=None."
        )

    return inputs[candidate_key]


def _parse_labels_getter(
    labels_getter: Union[str, Callable[[Any], Optional[torch.Tensor]], None]
) -> Callable[[Any], Optional[torch.Tensor]]:
    if labels_getter == "default":
        return _find_labels_default_heuristic
    elif callable(labels_getter):
        return labels_getter
    elif labels_getter is None:
        return lambda _: None
    else:
        raise ValueError(f"labels_getter should either be 'default', a callable, or None, but got {labels_getter}.")
Nicolas Hug's avatar
Nicolas Hug committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


def get_bounding_boxes(flat_inputs: List[Any]) -> datapoints.BoundingBoxes:
    # This assumes there is only one bbox per sample as per the general convention
    try:
        return next(inpt for inpt in flat_inputs if isinstance(inpt, datapoints.BoundingBoxes))
    except StopIteration:
        raise ValueError("No bounding boxes were found in the sample")


def query_chw(flat_inputs: List[Any]) -> Tuple[int, int, int]:
    chws = {
        tuple(get_dimensions(inpt))
        for inpt in flat_inputs
        if check_type(inpt, (is_pure_tensor, datapoints.Image, PIL.Image.Image, datapoints.Video))
    }
    if not chws:
        raise TypeError("No image or video was found in the sample")
    elif len(chws) > 1:
        raise ValueError(f"Found multiple CxHxW dimensions in the sample: {sequence_to_str(sorted(chws))}")
    c, h, w = chws.pop()
    return c, h, w


def query_size(flat_inputs: List[Any]) -> Tuple[int, int]:
    sizes = {
        tuple(get_size(inpt))
        for inpt in flat_inputs
        if check_type(
            inpt,
            (
                is_pure_tensor,
                datapoints.Image,
                PIL.Image.Image,
                datapoints.Video,
                datapoints.Mask,
                datapoints.BoundingBoxes,
            ),
        )
    }
    if not sizes:
        raise TypeError("No image, video, mask or bounding box was found in the sample")
    elif len(sizes) > 1:
        raise ValueError(f"Found multiple HxW dimensions in the sample: {sequence_to_str(sorted(sizes))}")
    h, w = sizes.pop()
    return h, w


def check_type(obj: Any, types_or_checks: Tuple[Union[Type, Callable[[Any], bool]], ...]) -> bool:
    for type_or_check in types_or_checks:
        if isinstance(obj, type_or_check) if isinstance(type_or_check, type) else type_or_check(obj):
            return True
    return False


def has_any(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool:
    for inpt in flat_inputs:
        if check_type(inpt, types_or_checks):
            return True
    return False


def has_all(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool:
    for type_or_check in types_or_checks:
        for inpt in flat_inputs:
            if isinstance(inpt, type_or_check) if isinstance(type_or_check, type) else type_or_check(inpt):
                break
        else:
            return False
    return True