README.rst 12.4 KB
Newer Older
Thomas Grainger's avatar
Thomas Grainger committed
1
2
3
torch-vision
============

4
5
6
.. image:: https://travis-ci.org/pytorch/vision.svg?branch=master
    :target: https://travis-ci.org/pytorch/vision

Thomas Grainger's avatar
Thomas Grainger committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
This repository consists of:

-  `vision.datasets <#datasets>`__ : Data loaders for popular vision
   datasets
-  `vision.models <#models>`__ : Definitions for popular model
   architectures, such as AlexNet, VGG, and ResNet and pre-trained
   models.
-  `vision.transforms <#transforms>`__ : Common image transformations
   such as random crop, rotations etc.
-  `vision.utils <#utils>`__ : Useful stuff such as saving tensor (3 x H
   x W) as image to disk, given a mini-batch creating a grid of images,
   etc.

Installation
============

Soumith Chintala's avatar
Soumith Chintala committed
23
Anaconda:
Thomas Grainger's avatar
Thomas Grainger committed
24
25
26

.. code:: bash

Soumith Chintala's avatar
Soumith Chintala committed
27
    conda install torchvision -c soumith
Thomas Grainger's avatar
Thomas Grainger committed
28

Soumith Chintala's avatar
Soumith Chintala committed
29
pip:
Thomas Grainger's avatar
Thomas Grainger committed
30
31
32

.. code:: bash

Thomas Grainger's avatar
Thomas Grainger committed
33
    pip install torchvision
Thomas Grainger's avatar
Thomas Grainger committed
34

Soumith Chintala's avatar
Soumith Chintala committed
35
36
37
38
39
40
From source:

.. code:: bash

    python setup.py install

Thomas Grainger's avatar
Thomas Grainger committed
41
42
43
44
45
Datasets
========

The following dataset loaders are available:

46
-  `MNIST <#mnist>`__
Thomas Grainger's avatar
Thomas Grainger committed
47
48
49
50
51
-  `COCO (Captioning and Detection) <#coco>`__
-  `LSUN Classification <#lsun>`__
-  `ImageFolder <#imagefolder>`__
-  `Imagenet-12 <#imagenet-12>`__
-  `CIFAR10 and CIFAR100 <#cifar>`__
Elad Hoffer's avatar
Elad Hoffer committed
52
-  `STL10 <#stl10>`__
Soumith Chintala's avatar
Soumith Chintala committed
53
-  `SVHN <#svhn>`__
edgarriba's avatar
edgarriba committed
54
-  `PhotoTour <#phototour>`__
Thomas Grainger's avatar
Thomas Grainger committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Datasets have the API: - ``__getitem__`` - ``__len__`` They all subclass
from ``torch.utils.data.Dataset`` Hence, they can all be multi-threaded
(python multiprocessing) using standard torch.utils.data.DataLoader.

For example:

``torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads)``

In the constructor, each dataset has a slightly different API as needed,
but they all take the keyword args:

-  ``transform`` - a function that takes in an image and returns a
   transformed version
-  common stuff like ``ToTensor``, ``RandomCrop``, etc. These can be
   composed together with ``transforms.Compose`` (see transforms section
   below)
-  ``target_transform`` - a function that takes in the target and
   transforms it. For example, take in the caption string and return a
   tensor of word indices.

76
77
78
79
MNIST
~~~~~
``dset.MNIST(root, train=True, transform=None, target_transform=None, download=False)``

Sri Krishna's avatar
Sri Krishna committed
80
``root``: root directory of dataset where ``processed/training.pt`` and ``processed/test.pt`` exist
81
82
83
84
85
86
87
88
89
90

``train``: ``True`` - use training set, ``False`` - use test set.

``transform``: transform to apply to input images

``target_transform``: transform to apply to targets (class labels)

``download``: whether to download the MNIST data


Thomas Grainger's avatar
Thomas Grainger committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
COCO
~~~~

This requires the `COCO API to be
installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`__

Captions:
^^^^^^^^^

``dset.CocoCaptions(root="dir where images are", annFile="json annotation file", [transform, target_transform])``

Example:

.. code:: python

    import torchvision.datasets as dset
    import torchvision.transforms as transforms
    cap = dset.CocoCaptions(root = 'dir where images are',
                            annFile = 'json annotation file',
                            transform=transforms.ToTensor())

    print('Number of samples: ', len(cap))
    img, target = cap[3] # load 4th sample

    print("Image Size: ", img.size())
    print(target)

Output:

::

    Number of samples: 82783
    Image Size: (3L, 427L, 640L)
    [u'A plane emitting smoke stream flying over a mountain.',
    u'A plane darts across a bright blue sky behind a mountain covered in snow',
    u'A plane leaves a contrail above the snowy mountain top.',
    u'A mountain that has a plane flying overheard in the distance.',
    u'A mountain view with a plume of smoke in the background']

Detection:
^^^^^^^^^^

``dset.CocoDetection(root="dir where images are", annFile="json annotation file", [transform, target_transform])``

LSUN
~~~~

``dset.LSUN(db_path, classes='train', [transform, target_transform])``

140
141
142
143
144
145
-  ``db_path`` = root directory for the database files
-  ``classes`` =
-  ``'train'`` - all categories, training set
-  ``'val'`` - all categories, validation set
-  ``'test'`` - all categories, test set
-  [``'bedroom_train'``, ``'church_train'``, ...] : a list of categories to
Thomas Grainger's avatar
Thomas Grainger committed
146
147
148
149
150
151
152
153
154
155
156
157
158
   load

CIFAR
~~~~~

``dset.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)``

``dset.CIFAR100(root, train=True, transform=None, target_transform=None, download=False)``

-  ``root`` : root directory of dataset where there is folder
   ``cifar-10-batches-py``
-  ``train`` : ``True`` = Training set, ``False`` = Test set
-  ``download`` : ``True`` = downloads the dataset from the internet and
Uridah Sami Ahmed's avatar
Uridah Sami Ahmed committed
159
   puts it in root directory. If dataset is already downloaded, does not do
Thomas Grainger's avatar
Thomas Grainger committed
160
161
   anything.

Elad Hoffer's avatar
Elad Hoffer committed
162
163
164
165
166
167
168
169
170
STL10
~~~~~

``dset.STL10(root, split='train', transform=None, target_transform=None, download=False)``

-  ``root`` : root directory of dataset where there is folder ``stl10_binary``
-  ``split`` : ``'train'`` = Training set, ``'test'`` = Test set, ``'unlabeled'`` = Unlabeled set,
    ``'train+unlabeled'`` = Training + Unlabeled set (missing label marked as ``-1``)
-  ``download`` : ``True`` = downloads the dataset from the internet and
Uridah Sami Ahmed's avatar
Uridah Sami Ahmed committed
171
    puts it in root directory. If dataset is already downloaded, does not do
Elad Hoffer's avatar
Elad Hoffer committed
172
    anything.
edgarriba's avatar
edgarriba committed
173

174
175
176
177
178
179
180
181
182
183
SVHN
~~~~~

``dset.SVHN(root, split='train', transform=None, target_transform=None, download=False)``

-  ``root`` : root directory of dataset where there is folder ``SVHN``
-  ``split`` : ``'train'`` = Training set, ``'test'`` = Test set, ``'extra'`` = Extra training set
-  ``download`` : ``True`` = downloads the dataset from the internet and
    puts it in root directory. If dataset is already downloaded, does not do
    anything.
Elad Hoffer's avatar
Elad Hoffer committed
184

Thomas Grainger's avatar
Thomas Grainger committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
ImageFolder
~~~~~~~~~~~

A generic data loader where the images are arranged in this way:

::

    root/dog/xxx.png
    root/dog/xxy.png
    root/dog/xxz.png

    root/cat/123.png
    root/cat/nsdf3.png
    root/cat/asd932_.png

``dset.ImageFolder(root="root folder path", [transform, target_transform])``

It has the members:

-  ``self.classes`` - The class names as a list
-  ``self.class_to_idx`` - Corresponding class indices
-  ``self.imgs`` - The list of (image path, class-index) tuples

Imagenet-12
~~~~~~~~~~~

This is simply implemented with an ImageFolder dataset.

The data is preprocessed `as described
here <https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset>`__

`Here is an
example <https://github.com/pytorch/examples/blob/27e2a46c1d1505324032b1d94fc6ce24d5b67e97/imagenet/main.py#L48-L62>`__.

edgarriba's avatar
edgarriba committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
PhotoTour
~~~~~~~~~

**Learning Local Image Descriptors Data**
http://phototour.cs.washington.edu/patches/default.htm

.. code:: python

    import torchvision.datasets as dset
    import torchvision.transforms as transforms
    dataset = dset.PhotoTour(root = 'dir where images are',
                             name = 'name of the dataset to load',
                             transform=transforms.ToTensor())

    print('Loaded PhotoTour: {} with {} images.'
          .format(dataset.name, len(dataset.data)))

Thomas Grainger's avatar
Thomas Grainger committed
236
237
238
239
240
241
242
243
244
245
246
247
Models
======

The models subpackage contains definitions for the following model
architectures:

-  `AlexNet <https://arxiv.org/abs/1404.5997>`__: AlexNet variant from
   the "One weird trick" paper.
-  `VGG <https://arxiv.org/abs/1409.1556>`__: VGG-11, VGG-13, VGG-16,
   VGG-19 (with and without batch normalization)
-  `ResNet <https://arxiv.org/abs/1512.03385>`__: ResNet-18, ResNet-34,
   ResNet-50, ResNet-101, ResNet-152
248
249
-  `SqueezeNet <https://arxiv.org/abs/1602.07360>`__: SqueezeNet 1.0, and
   SqueezeNet 1.1
Thomas Grainger's avatar
Thomas Grainger committed
250
251
252
253
254
255
256
257
258

You can construct a model with random weights by calling its
constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
Yili Zhao's avatar
Yili Zhao committed
259
    vgg16 = models.vgg16()
260
    squeezenet = models.squeezenet1_0()
Thomas Grainger's avatar
Thomas Grainger committed
261

262
263
We provide pre-trained models for the ResNet variants, SqueezeNet 1.0 and 1.1,
and AlexNet, using the PyTorch `model zoo <http://pytorch.org/docs/model_zoo.html>`__.
Thomas Grainger's avatar
Thomas Grainger committed
264
265
These can be constructed by passing ``pretrained=True``:

Soumith Chintala's avatar
Soumith Chintala committed
266
267
268
269
270
.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
271
    squeezenet = models.squeezenet1_0(pretrained=True)
Soumith Chintala's avatar
Soumith Chintala committed
272

Thomas Grainger's avatar
Thomas Grainger committed
273
274
275
276
277
278
279
280

Transforms
==========

Transforms are common image transforms. They can be chained together
using ``transforms.Compose``

``transforms.Compose``
281
~~~~~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295

One can compose several transforms together. For example.

.. code:: python

    transform = transforms.Compose([
        transforms.RandomSizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                              std = [ 0.229, 0.224, 0.225 ]),
    ])

Transforms on PIL.Image
Thomas Grainger's avatar
Thomas Grainger committed
296
~~~~~~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
297
298

``Scale(size, interpolation=Image.BILINEAR)``
Thomas Grainger's avatar
Thomas Grainger committed
299
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
300
301
302
303
304
305
306
307
308

Rescales the input PIL.Image to the given 'size'. 'size' will be the
size of the smaller edge.

For example, if height > width, then image will be rescaled to (size \*
height / width, size) - size: size of the smaller edge - interpolation:
Default: PIL.Image.BILINEAR

``CenterCrop(size)`` - center-crops the image to the given size
Thomas Grainger's avatar
Thomas Grainger committed
309
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
310
311
312
313
314
315

Crops the given PIL.Image at the center to have a region of the given
size. size can be a tuple (target\_height, target\_width) or an integer,
in which case the target will be of a square shape (size, size)

``RandomCrop(size, padding=0)``
Thomas Grainger's avatar
Thomas Grainger committed
316
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
317
318
319
320
321
322
323
324

Crops the given PIL.Image at a random location to have a region of the
given size. size can be a tuple (target\_height, target\_width) or an
integer, in which case the target will be of a square shape (size, size)
If ``padding`` is non-zero, then the image is first zero-padded on each
side with ``padding`` pixels.

``RandomHorizontalFlip()``
Thomas Grainger's avatar
Thomas Grainger committed
325
^^^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
326
327
328
329
330

Randomly horizontally flips the given PIL.Image with a probability of
0.5

``RandomSizedCrop(size, interpolation=Image.BILINEAR)``
Thomas Grainger's avatar
Thomas Grainger committed
331
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
332
333
334
335
336
337
338
339
340

Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the
original size and and a random aspect ratio of 3/4 to 4/3 of the
original aspect ratio

This is popularly used to train the Inception networks - size: size of
the smaller edge - interpolation: Default: PIL.Image.BILINEAR

``Pad(padding, fill=0)``
Thomas Grainger's avatar
Thomas Grainger committed
341
^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
342
343
344
345
346
347

Pads the given image on each side with ``padding`` number of pixels, and
the padding pixels are filled with pixel value ``fill``. If a ``5x5``
image is padded with ``padding=1`` then it becomes ``7x7``

Transforms on torch.\*Tensor
Thomas Grainger's avatar
Thomas Grainger committed
348
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
349
350

``Normalize(mean, std)``
Thomas Grainger's avatar
Thomas Grainger committed
351
^^^^^^^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
352
353
354
355
356

Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of
the torch.\*Tensor, i.e. channel = (channel - mean) / std

Conversion Transforms
Thomas Grainger's avatar
Thomas Grainger committed
357
~~~~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
358
359
360
361
362
363
364
365

-  ``ToTensor()`` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x
   C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W)
   in the range [0.0, 1.0]
-  ``ToPILImage()`` - Converts a torch.\*Tensor of range [0, 1] and
   shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and
   shape H x W x C to a PIL.Image of range [0, 255]

Guillaume George's avatar
Guillaume George committed
366
Generic Transforms
Thomas Grainger's avatar
Thomas Grainger committed
367
~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
368
369

``Lambda(lambda)``
Thomas Grainger's avatar
Thomas Grainger committed
370
^^^^^^^^^^^^^^^^^^
Thomas Grainger's avatar
Thomas Grainger committed
371
372
373
374
375
376
377
378
379
380
381

Given a Python lambda, applies it to the input ``img`` and returns it.
For example:

.. code:: python

    transforms.Lambda(lambda x: x.add(10))

Utils
=====

382
make\_grid(tensor, nrow=8, padding=2, normalize=False, range=None, scale\_each=False)
383
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
384

385
386
387
Given a 4D mini-batch Tensor of shape (B x C x H x W),
or a list of images all of the same size,
makes a grid of images
Thomas Grainger's avatar
Thomas Grainger committed
388

389
390
391
392
393
394
395
396
397
398
399
400
normalize=True will shift the image to the range (0, 1),
by subtracting the minimum and dividing by the maximum pixel value.

if range=(min, max) where min and max are numbers, then these numbers are used to
normalize the image.

scale_each=True will scale each image in the batch of images separately rather than
computing the (min, max) over all images.

[Example usage is given in this notebook](https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91)

save\_image(tensor, filename, nrow=8, padding=2, normalize=False, range=None, scale\_each=False)
401
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thomas Grainger's avatar
Thomas Grainger committed
402
403
404
405

Saves a given Tensor into an image file.

If given a mini-batch tensor, will save the tensor as a grid of images.
406
407
408

All options after `filename` are passed through to `make_grid`. Refer to it's documentation for
more details