densenet.py 16.4 KB
Newer Older
1
import re
2
from collections import OrderedDict
3
4
from functools import partial
from typing import Any, List, Optional, Tuple
5

Geoff Pleiss's avatar
Geoff Pleiss committed
6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F
9
import torch.utils.checkpoint as cp
eellison's avatar
eellison committed
10
from torch import Tensor
11

12
from ..transforms._presets import ImageClassification
13
from ..utils import _log_api_usage_once
14
15
16
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
17

Geoff Pleiss's avatar
Geoff Pleiss committed
18

19
20
21
22
23
24
25
26
27
28
29
__all__ = [
    "DenseNet",
    "DenseNet121_Weights",
    "DenseNet161_Weights",
    "DenseNet169_Weights",
    "DenseNet201_Weights",
    "densenet121",
    "densenet161",
    "densenet169",
    "densenet201",
]
Geoff Pleiss's avatar
Geoff Pleiss committed
30
31


eellison's avatar
eellison committed
32
class _DenseLayer(nn.Module):
33
    def __init__(
34
        self, num_input_features: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False
35
    ) -> None:
36
        super().__init__()
37
        self.norm1: nn.BatchNorm2d
38
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
39
        self.relu1: nn.ReLU
40
        self.add_module("relu1", nn.ReLU(inplace=True))
41
        self.conv1: nn.Conv2d
42
43
44
        self.add_module(
            "conv1", nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
        )
45
        self.norm2: nn.BatchNorm2d
46
        self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))
47
        self.relu2: nn.ReLU
48
        self.add_module("relu2", nn.ReLU(inplace=True))
49
        self.conv2: nn.Conv2d
50
51
52
        self.add_module(
            "conv2", nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
        )
eellison's avatar
eellison committed
53
        self.drop_rate = float(drop_rate)
54
55
        self.memory_efficient = memory_efficient

56
    def bn_function(self, inputs: List[Tensor]) -> Tensor:
eellison's avatar
eellison committed
57
58
59
60
61
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))  # noqa: T484
        return bottleneck_output

    # todo: rewrite when torchscript supports any
62
    def any_requires_grad(self, input: List[Tensor]) -> bool:
eellison's avatar
eellison committed
63
64
65
66
67
68
        for tensor in input:
            if tensor.requires_grad:
                return True
        return False

    @torch.jit.unused  # noqa: T484
69
    def call_checkpoint_bottleneck(self, input: List[Tensor]) -> Tensor:
eellison's avatar
eellison committed
70
        def closure(*inputs):
71
            return self.bn_function(inputs)
eellison's avatar
eellison committed
72

73
        return cp.checkpoint(closure, *input)
eellison's avatar
eellison committed
74
75

    @torch.jit._overload_method  # noqa: F811
76
    def forward(self, input: List[Tensor]) -> Tensor:  # noqa: F811
eellison's avatar
eellison committed
77
78
        pass

79
    @torch.jit._overload_method  # noqa: F811
80
    def forward(self, input: Tensor) -> Tensor:  # noqa: F811
eellison's avatar
eellison committed
81
82
83
84
        pass

    # torchscript does not yet support *args, so we overload method
    # allowing it to take either a List[Tensor] or single Tensor
85
    def forward(self, input: Tensor) -> Tensor:  # noqa: F811
eellison's avatar
eellison committed
86
87
        if isinstance(input, Tensor):
            prev_features = [input]
88
        else:
eellison's avatar
eellison committed
89
90
91
92
93
94
95
96
97
98
            prev_features = input

        if self.memory_efficient and self.any_requires_grad(prev_features):
            if torch.jit.is_scripting():
                raise Exception("Memory Efficient not supported in JIT")

            bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
        else:
            bottleneck_output = self.bn_function(prev_features)

99
        new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
100
        if self.drop_rate > 0:
101
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
102
        return new_features
103
104


eellison's avatar
eellison committed
105
class _DenseBlock(nn.ModuleDict):
eellison's avatar
eellison committed
106
107
    _version = 2

108
109
110
111
112
113
114
    def __init__(
        self,
        num_layers: int,
        num_input_features: int,
        bn_size: int,
        growth_rate: int,
        drop_rate: float,
115
        memory_efficient: bool = False,
116
    ) -> None:
117
        super().__init__()
118
        for i in range(num_layers):
119
120
121
122
123
124
125
            layer = _DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                drop_rate=drop_rate,
                memory_efficient=memory_efficient,
            )
126
            self.add_module("denselayer%d" % (i + 1), layer)
127

128
    def forward(self, init_features: Tensor) -> Tensor:
129
        features = [init_features]
eellison's avatar
eellison committed
130
        for name, layer in self.items():
eellison's avatar
eellison committed
131
            new_features = layer(features)
132
133
134
            features.append(new_features)
        return torch.cat(features, 1)

135
136

class _Transition(nn.Sequential):
137
    def __init__(self, num_input_features: int, num_output_features: int) -> None:
138
        super().__init__()
139
140
141
142
        self.add_module("norm", nn.BatchNorm2d(num_input_features))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
        self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))
143
144
145
146


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
147
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
148
149
150
151
152
153
154
155
156

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
157
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
158
          but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
159
160
    """

161
162
163
164
165
166
167
168
    def __init__(
        self,
        growth_rate: int = 32,
        block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),
        num_init_features: int = 64,
        bn_size: int = 4,
        drop_rate: float = 0,
        num_classes: int = 1000,
169
        memory_efficient: bool = False,
170
    ) -> None:
171

172
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
173
        _log_api_usage_once(self)
174
175

        # First convolution
176
177
178
179
180
181
182
183
184
185
        self.features = nn.Sequential(
            OrderedDict(
                [
                    ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
                    ("norm0", nn.BatchNorm2d(num_init_features)),
                    ("relu0", nn.ReLU(inplace=True)),
                    ("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
                ]
            )
        )
186
187
188
189

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
190
191
192
193
194
195
            block = _DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bn_size,
                growth_rate=growth_rate,
                drop_rate=drop_rate,
196
                memory_efficient=memory_efficient,
197
            )
198
            self.features.add_module("denseblock%d" % (i + 1), block)
199
200
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
201
202
                trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
                self.features.add_module("transition%d" % (i + 1), trans)
203
204
205
                num_features = num_features // 2

        # Final batch norm
206
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
207
208
209
210
211
212
213
214
215
216
217
218
219
220

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

        # Official init from torch repo.
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

221
    def forward(self, x: Tensor) -> Tensor:
222
223
        features = self.features(x)
        out = F.relu(features, inplace=True)
224
225
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out = torch.flatten(out, 1)
226
227
228
229
        out = self.classifier(out)
        return out


230
def _load_state_dict(model: nn.Module, weights: WeightsEnum, progress: bool) -> None:
231
    # '.'s are no longer allowed in module names, but previous _DenseLayer
232
233
234
235
    # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
    # They are also in the checkpoints in model_urls. This pattern is used
    # to find such keys.
    pattern = re.compile(
236
237
        r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
    )
238

239
    state_dict = weights.get_state_dict(progress=progress)
240
241
242
243
244
245
246
247
248
    for key in list(state_dict.keys()):
        res = pattern.match(key)
        if res:
            new_key = res.group(1) + res.group(2)
            state_dict[new_key] = state_dict[key]
            del state_dict[key]
    model.load_state_dict(state_dict)


249
250
251
252
def _densenet(
    growth_rate: int,
    block_config: Tuple[int, int, int, int],
    num_init_features: int,
253
    weights: Optional[WeightsEnum],
254
    progress: bool,
255
    **kwargs: Any,
256
) -> DenseNet:
257
258
259
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

260
    model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
261
262
263
264

    if weights is not None:
        _load_state_dict(model=model, weights=weights, progress=progress)

265
266
267
    return model


268
269
270
271
272
273
274
275
276
277
278
279
280
281
_COMMON_META = {
    "min_size": (29, 29),
    "categories": _IMAGENET_CATEGORIES,
    "recipe": "https://github.com/pytorch/vision/pull/116",
}


class DenseNet121_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/densenet121-a639ec97.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 7978856,
282
283
284
285
            "metrics": {
                "acc@1": 74.434,
                "acc@5": 91.972,
            },
286
287
288
289
290
291
292
293
294
295
296
297
        },
    )
    DEFAULT = IMAGENET1K_V1


class DenseNet161_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/densenet161-8d451a50.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 28681000,
298
299
300
301
            "metrics": {
                "acc@1": 77.138,
                "acc@5": 93.560,
            },
302
303
304
305
306
307
308
309
310
311
312
313
        },
    )
    DEFAULT = IMAGENET1K_V1


class DenseNet169_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/densenet169-b2777c0a.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 14149480,
314
315
316
317
            "metrics": {
                "acc@1": 75.600,
                "acc@5": 92.806,
            },
318
319
320
321
322
323
324
325
326
327
328
329
        },
    )
    DEFAULT = IMAGENET1K_V1


class DenseNet201_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/densenet201-c1103571.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 20013928,
330
331
332
333
            "metrics": {
                "acc@1": 76.896,
                "acc@5": 93.370,
            },
334
335
336
337
338
339
340
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", DenseNet121_Weights.IMAGENET1K_V1))
def densenet121(*, weights: Optional[DenseNet121_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
Geoff Pleiss's avatar
Geoff Pleiss committed
341
    r"""Densenet-121 model from
342
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
343
    The required minimum input size of the model is 29x29.
Geoff Pleiss's avatar
Geoff Pleiss committed
344
345

    Args:
346
347
348
349
350
351
352
353
354
355
356
357
358
        weights (:class:`~torchvision.models.DenseNet121_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet121_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet121_Weights
        :members:
Geoff Pleiss's avatar
Geoff Pleiss committed
359
    """
360
    weights = DenseNet121_Weights.verify(weights)
Geoff Pleiss's avatar
Geoff Pleiss committed
361

362
    return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
363

364
365
366

@handle_legacy_interface(weights=("pretrained", DenseNet161_Weights.IMAGENET1K_V1))
def densenet161(*, weights: Optional[DenseNet161_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
367
    r"""Densenet-161 model from
368
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
369
    The required minimum input size of the model is 29x29.
Geoff Pleiss's avatar
Geoff Pleiss committed
370
371

    Args:
372
373
374
375
376
377
378
379
380
381
382
383
384
        weights (:class:`~torchvision.models.DenseNet161_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet161_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet161_Weights
        :members:
Geoff Pleiss's avatar
Geoff Pleiss committed
385
    """
386
387
388
    weights = DenseNet161_Weights.verify(weights)

    return _densenet(48, (6, 12, 36, 24), 96, weights, progress, **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
389
390


391
392
@handle_legacy_interface(weights=("pretrained", DenseNet169_Weights.IMAGENET1K_V1))
def densenet169(*, weights: Optional[DenseNet169_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
393
    r"""Densenet-169 model from
394
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
395
    The required minimum input size of the model is 29x29.
Geoff Pleiss's avatar
Geoff Pleiss committed
396
397

    Args:
398
399
400
401
402
403
404
405
406
407
408
409
410
        weights (:class:`~torchvision.models.DenseNet169_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet169_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet169_Weights
        :members:
Geoff Pleiss's avatar
Geoff Pleiss committed
411
    """
412
    weights = DenseNet169_Weights.verify(weights)
Geoff Pleiss's avatar
Geoff Pleiss committed
413

414
    return _densenet(32, (6, 12, 32, 32), 64, weights, progress, **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
415

416
417
418

@handle_legacy_interface(weights=("pretrained", DenseNet201_Weights.IMAGENET1K_V1))
def densenet201(*, weights: Optional[DenseNet201_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
419
    r"""Densenet-201 model from
420
    `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
421
    The required minimum input size of the model is 29x29.
Geoff Pleiss's avatar
Geoff Pleiss committed
422
423

    Args:
424
425
426
427
428
429
430
431
432
433
434
435
436
        weights (:class:`~torchvision.models.DenseNet201_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.DenseNet201_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.DenseNet201_Weights
        :members:
Geoff Pleiss's avatar
Geoff Pleiss committed
437
    """
438
439
440
    weights = DenseNet201_Weights.verify(weights)

    return _densenet(32, (6, 12, 48, 32), 64, weights, progress, **kwargs)