builtin_dataset_mocks.py 16.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import functools
import gzip
import lzma
import pathlib
import pickle
import tempfile
from collections import defaultdict
from typing import Any, Dict, Tuple

import numpy as np
import pytest
import torch
from datasets_utils import create_image_folder, make_tar, make_zip
from torch.testing import make_tensor as _make_tensor
from torchdata.datapipes.iter import IterDataPipe
from torchvision.prototype import datasets
17
from torchvision.prototype.datasets._api import DEFAULT_DECODER_MAP, DEFAULT_DECODER
18
from torchvision.prototype.datasets._api import find
Philip Meier's avatar
Philip Meier committed
19
from torchvision.prototype.utils._internal import add_suggestion
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

make_tensor = functools.partial(_make_tensor, device="cpu")

__all__ = ["load"]

DEFAULT_TEST_DECODER = object()


class DatasetMocks:
    def __init__(self):
        self._mock_data_fns = {}
        self._tmp_home = pathlib.Path(tempfile.mkdtemp())
        self._cache = {}

    def register_mock_data_fn(self, mock_data_fn):
        name = mock_data_fn.__name__
        if name not in datasets.list():
            raise pytest.UsageError(
                add_suggestion(
                    f"The name of the mock data function '{name}' has no corresponding dataset.",
                    word=name,
                    possibilities=datasets.list(),
                    close_match_hint=lambda close_match: f"Did you mean to name it '{close_match}'?",
                    alternative_hint=lambda _: "",
                )
            )
        self._mock_data_fns[name] = mock_data_fn
        return mock_data_fn

    def _parse_mock_info(self, mock_info, *, name):
        if mock_info is None:
            raise pytest.UsageError(
                f"The mock data function for dataset '{name}' returned nothing. It needs to at least return an integer "
                f"indicating the number of samples for the current `config`."
            )
        elif isinstance(mock_info, int):
            mock_info = dict(num_samples=mock_info)
        elif not isinstance(mock_info, dict):
            raise pytest.UsageError(
                f"The mock data function for dataset '{name}' returned a {type(mock_info)}. The returned object should "
                f"be a dictionary containing at least the number of samples for the current `config` for the key "
                f"`'num_samples'`. If no additional information is required for specific tests, the number of samples "
                f"can also be returned as an integer."
            )
        elif "num_samples" not in mock_info:
            raise pytest.UsageError(
                f"The dictionary returned by the mock data function for dataset '{name}' must contain a `'num_samples'` "
                f"entry indicating the number of samples for the current `config`."
            )
        return mock_info

    def _get(self, dataset, config):
        name = dataset.info.name
        resources_and_mock_info = self._cache.get((name, config))
        if resources_and_mock_info:
            return resources_and_mock_info

        try:
            fakedata_fn = self._mock_data_fns[name]
        except KeyError:
            raise pytest.UsageError(
                f"No mock data available for dataset '{name}'. "
                f"Did you add a new dataset, but forget to provide mock data for it? "
                f"Did you register the mock data function with `@DatasetMocks.register_mock_data_fn`?"
            )

        root = self._tmp_home / name
        root.mkdir(exist_ok=True)
        mock_info = self._parse_mock_info(fakedata_fn(dataset.info, root, config), name=name)

        mock_resources = []
        for resource in dataset.resources(config):
            path = root / resource.file_name
            if not path.exists() and path.is_file():
                raise pytest.UsageError(
                    f"Dataset '{name}' requires the file {path.name} for {config}, but this file does not exist."
                )

            mock_resources.append(datasets.utils.LocalResource(path))

        self._cache[(name, config)] = mock_resources, mock_info
        return mock_resources, mock_info

    def load(
104
        self, name: str, decoder=DEFAULT_DECODER, split="train", **options: Any
105
106
107
108
109
110
111
    ) -> Tuple[IterDataPipe, Dict[str, Any]]:
        dataset = find(name)
        config = dataset.info.make_config(split=split, **options)
        resources, mock_info = self._get(dataset, config)
        datapipe = dataset._make_datapipe(
            [resource.to_datapipe() for resource in resources],
            config=config,
112
            decoder=DEFAULT_DECODER_MAP.get(dataset.info.type) if decoder is DEFAULT_DECODER else decoder,
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        )
        return datapipe, mock_info


dataset_mocks = DatasetMocks()
load = dataset_mocks.load


class MNISTFakedata:
    _DTYPES_ID = {
        torch.uint8: 8,
        torch.int8: 9,
        torch.int16: 11,
        torch.int32: 12,
        torch.float32: 13,
        torch.float64: 14,
    }

    @classmethod
    def _magic(cls, dtype, ndim):
        return cls._DTYPES_ID[dtype] * 256 + ndim + 1

    @staticmethod
    def _encode(t):
        return torch.tensor(t, dtype=torch.int32).numpy().tobytes()[::-1]

    @staticmethod
    def _big_endian_dtype(dtype):
        np_dtype = getattr(np, str(dtype).replace("torch.", ""))().dtype
        return np.dtype(f">{np_dtype.kind}{np_dtype.itemsize}")

    @classmethod
    def _create_binary_file(cls, root, filename, *, num_samples, shape, dtype, compressor, low=0, high):
        with compressor(root / filename, "wb") as fh:
            if dtype != torch.uint8:
                print()

            for meta in (cls._magic(dtype, len(shape)), num_samples, *shape):
                fh.write(cls._encode(meta))

            data = make_tensor((num_samples, *shape), dtype=dtype, low=low, high=high)

            fh.write(data.numpy().astype(cls._big_endian_dtype(dtype)).tobytes())

    @classmethod
    def generate(
        cls,
        root,
        *,
        num_categories,
        num_samples=None,
        images_file,
        labels_file,
        image_size=(28, 28),
        image_dtype=torch.uint8,
        label_size=(),
        label_dtype=torch.uint8,
        compressor=None,
    ):
        if num_samples is None:
            num_samples = num_categories
        if compressor is None:
            compressor = gzip.open

        cls._create_binary_file(
            root,
            images_file,
            num_samples=num_samples,
            shape=image_size,
            dtype=image_dtype,
            compressor=compressor,
            high=float("inf"),
        )
        cls._create_binary_file(
            root,
            labels_file,
            num_samples=num_samples,
            shape=label_size,
            dtype=label_dtype,
            compressor=compressor,
            high=num_categories,
        )

        return num_samples


@dataset_mocks.register_mock_data_fn
def mnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
    return MNISTFakedata.generate(
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


@dataset_mocks.register_mock_data_fn
def fashionmnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
    return MNISTFakedata.generate(
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


@dataset_mocks.register_mock_data_fn
def kmnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
    return MNISTFakedata.generate(
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


@dataset_mocks.register_mock_data_fn
def emnist(info, root, config):
    # The image sets that merge some lower case letters in their respective upper case variant, still use dense
    # labels in the data files. Thus, num_categories != len(categories) there.
    num_categories = defaultdict(
        lambda: len(info.categories), **{image_set: 47 for image_set in ("Balanced", "By_Merge")}
    )

    num_samples = {}
    file_names = set()
    for _config in info._configs:
        prefix = f"emnist-{_config.image_set.replace('_', '').lower()}-{_config.split}"
        images_file = f"{prefix}-images-idx3-ubyte.gz"
        labels_file = f"{prefix}-labels-idx1-ubyte.gz"
        file_names.update({images_file, labels_file})
        num_samples[_config.image_set] = MNISTFakedata.generate(
            root,
            num_categories=num_categories[_config.image_set],
            images_file=images_file,
            labels_file=labels_file,
        )

    make_zip(root, "emnist-gzip.zip", *file_names)

    return num_samples[config.image_set]


@dataset_mocks.register_mock_data_fn
def qmnist(info, root, config):
    num_categories = len(info.categories)
    if config.split == "train":
        num_samples = num_samples_gen = num_categories + 2
        prefix = "qmnist-train"
        suffix = ".gz"
        compressor = gzip.open
    elif config.split.startswith("test"):
        # The split 'test50k' is defined as the last 50k images beginning at index 10000. Thus, we need to create more
        # than 10000 images for the dataset to not be empty.
        num_samples = num_samples_gen = 10001
        if config.split == "test10k":
            num_samples = min(num_samples, 10000)
        if config.split == "test50k":
            num_samples -= 10000
        prefix = "qmnist-test"
        suffix = ".gz"
        compressor = gzip.open
    else:  # config.split == "nist"
        num_samples = num_samples_gen = num_categories + 3
        prefix = "xnist"
        suffix = ".xz"
        compressor = lzma.open

    MNISTFakedata.generate(
        root,
        num_categories=num_categories,
        num_samples=num_samples_gen,
        images_file=f"{prefix}-images-idx3-ubyte{suffix}",
        labels_file=f"{prefix}-labels-idx2-int{suffix}",
        label_size=(8,),
        label_dtype=torch.int32,
        compressor=compressor,
    )

    return num_samples


class CIFARFakedata:
    NUM_PIXELS = 32 * 32 * 3

    @classmethod
    def _create_batch_file(cls, root, name, *, num_categories, labels_key, num_samples=1):
        content = {
            "data": make_tensor((num_samples, cls.NUM_PIXELS), dtype=torch.uint8).numpy(),
            labels_key: torch.randint(0, num_categories, size=(num_samples,)).tolist(),
        }
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    @classmethod
    def generate(
        cls,
        root,
        name,
        *,
        folder,
        train_files,
        test_files,
        num_categories,
        labels_key,
    ):
        folder = root / folder
        folder.mkdir()
        files = (*train_files, *test_files)
        for file in files:
            cls._create_batch_file(
                folder,
                file,
                num_categories=num_categories,
                labels_key=labels_key,
            )

        make_tar(root, name, folder, compression="gz")


@dataset_mocks.register_mock_data_fn
def cifar10(info, root, config):
    train_files = [f"data_batch_{idx}" for idx in range(1, 6)]
    test_files = ["test_batch"]

    CIFARFakedata.generate(
        root=root,
        name="cifar-10-python.tar.gz",
        folder=pathlib.Path("cifar-10-batches-py"),
        train_files=train_files,
        test_files=test_files,
        num_categories=10,
        labels_key="labels",
    )

    return len(train_files if config.split == "train" else test_files)


@dataset_mocks.register_mock_data_fn
def cifar100(info, root, config):
    train_files = ["train"]
    test_files = ["test"]

    CIFARFakedata.generate(
        root=root,
        name="cifar-100-python.tar.gz",
        folder=pathlib.Path("cifar-100-python"),
        train_files=train_files,
        test_files=test_files,
        num_categories=100,
        labels_key="fine_labels",
    )

    return len(train_files if config.split == "train" else test_files)


@dataset_mocks.register_mock_data_fn
def caltech101(info, root, config):
    def create_ann_file(root, name):
        import scipy.io

        box_coord = make_tensor((1, 4), dtype=torch.int32, low=0).numpy().astype(np.uint16)
        obj_contour = make_tensor((2, int(torch.randint(3, 6, size=()))), dtype=torch.float64, low=0).numpy()

        scipy.io.savemat(str(pathlib.Path(root) / name), dict(box_coord=box_coord, obj_contour=obj_contour))

    def create_ann_folder(root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        root.mkdir(parents=True)

        for idx in range(num_examples):
            create_ann_file(root, file_name_fn(idx))

    images_root = root / "101_ObjectCategories"
    anns_root = root / "Annotations"

    ann_category_map = {
        "Faces_2": "Faces",
        "Faces_3": "Faces_easy",
        "Motorbikes_16": "Motorbikes",
        "Airplanes_Side_2": "airplanes",
    }

    num_images_per_category = 2
    for category in info.categories:
        create_image_folder(
            root=images_root,
            name=category,
            file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        create_ann_folder(
            root=anns_root,
            name=ann_category_map.get(category, category),
            file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
            num_examples=num_images_per_category,
        )

    (images_root / "BACKGROUND_Goodle").mkdir()
    make_tar(root, f"{images_root.name}.tar.gz", images_root, compression="gz")

    make_tar(root, f"{anns_root.name}.tar", anns_root)

    return num_images_per_category * len(info.categories)


@dataset_mocks.register_mock_data_fn
def caltech256(info, root, config):
    dir = root / "256_ObjectCategories"
    num_images_per_category = 2

    for idx, category in enumerate(info.categories, 1):
        files = create_image_folder(
            dir,
            name=f"{idx:03d}.{category}",
            file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        if category == "spider":
            open(files[0].parent / "RENAME2", "w").close()

    make_tar(root, f"{dir.name}.tar", dir)

    return num_images_per_category * len(info.categories)


@dataset_mocks.register_mock_data_fn
def imagenet(info, root, config):
    wnids = tuple(info.extra.wnid_to_category.keys())
    if config.split == "train":
        images_root = root / "ILSVRC2012_img_train"

        num_samples = len(wnids)

        for wnid in wnids:
            files = create_image_folder(
                root=images_root,
                name=wnid,
                file_name_fn=lambda image_idx: f"{wnid}_{image_idx:04d}.JPEG",
                num_examples=1,
            )
            make_tar(images_root, f"{wnid}.tar", files[0].parent)
464
    elif config.split == "val":
465
466
467
468
469
470
471
472
        num_samples = 3
        files = create_image_folder(
            root=root,
            name="ILSVRC2012_img_val",
            file_name_fn=lambda image_idx: f"ILSVRC2012_val_{image_idx + 1:08d}.JPEG",
            num_examples=num_samples,
        )
        images_root = files[0].parent
473
474
    else:  # config.split == "test"
        images_root = root / "ILSVRC2012_img_test_v10102019"
475

476
        num_samples = 3
477

478
479
480
481
482
483
        create_image_folder(
            root=images_root,
            name="test",
            file_name_fn=lambda image_idx: f"ILSVRC2012_test_{image_idx + 1:08d}.JPEG",
            num_examples=num_samples,
        )
484
    make_tar(root, f"{images_root.name}.tar", images_root)
485
486
487
488
489
490
491
492

    devkit_root = root / "ILSVRC2012_devkit_t12"
    devkit_root.mkdir()
    data_root = devkit_root / "data"
    data_root.mkdir()
    with open(data_root / "ILSVRC2012_validation_ground_truth.txt", "w") as file:
        for label in torch.randint(0, len(wnids), (num_samples,)).tolist():
            file.write(f"{label}\n")
493
494
495
    make_tar(root, f"{devkit_root}.tar.gz", devkit_root, compression="gz")

    return num_samples