fer2013.py 2.74 KB
Newer Older
Philip Meier's avatar
Philip Meier committed
1
2
import csv
import pathlib
3
from typing import Any, Callable, Optional, Tuple, Union
Philip Meier's avatar
Philip Meier committed
4
5
6
7

import torch
from PIL import Image

8
from .utils import check_integrity, verify_str_arg
Philip Meier's avatar
Philip Meier committed
9
10
11
12
13
14
15
16
from .vision import VisionDataset


class FER2013(VisionDataset):
    """`FER2013
    <https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge>`_ Dataset.

    Args:
17
        root (str or ``pathlib.Path``): Root directory of dataset where directory
Philip Meier's avatar
Philip Meier committed
18
19
            ``root/fer2013`` exists.
        split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``.
anthony-cabacungan's avatar
anthony-cabacungan committed
20
        transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
Philip Meier's avatar
Philip Meier committed
21
22
23
24
25
26
27
28
29
30
31
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the target and transforms it.
    """

    _RESOURCES = {
        "train": ("train.csv", "3f0dfb3d3fd99c811a1299cb947e3131"),
        "test": ("test.csv", "b02c2298636a634e8c2faabbf3ea9a23"),
    }

    def __init__(
        self,
32
        root: Union[str, pathlib.Path],
Philip Meier's avatar
Philip Meier committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        split: str = "train",
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
    ) -> None:
        self._split = verify_str_arg(split, "split", self._RESOURCES.keys())
        super().__init__(root, transform=transform, target_transform=target_transform)

        base_folder = pathlib.Path(self.root) / "fer2013"
        file_name, md5 = self._RESOURCES[self._split]
        data_file = base_folder / file_name
        if not check_integrity(str(data_file), md5=md5):
            raise RuntimeError(
                f"{file_name} not found in {base_folder} or corrupted. "
                f"You can download it from "
                f"https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge"
            )

        with open(data_file, "r", newline="") as file:
            self._samples = [
                (
                    torch.tensor([int(idx) for idx in row["pixels"].split()], dtype=torch.uint8).reshape(48, 48),
                    int(row["emotion"]) if "emotion" in row else None,
                )
                for row in csv.DictReader(file)
            ]

    def __len__(self) -> int:
        return len(self._samples)

    def __getitem__(self, idx: int) -> Tuple[Any, Any]:
        image_tensor, target = self._samples[idx]
        image = Image.fromarray(image_tensor.numpy())

        if self.transform is not None:
            image = self.transform(image)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return image, target

    def extra_repr(self) -> str:
        return f"split={self._split}"