train.py 8.92 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import datetime
import os
import time

import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn

from coco_utils import get_coco, get_coco_kp

from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from engine import train_one_epoch, evaluate

35
import presets
36
37
38
import utils


flauted's avatar
flauted committed
39
def get_dataset(name, image_set, transform, data_path):
40
    paths = {
flauted's avatar
flauted committed
41
42
        "coco": (data_path, get_coco, 91),
        "coco_kp": (data_path, get_coco_kp, 2)
43
44
45
46
47
48
49
    }
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


50
51
def get_transform(train, data_augmentation):
    return presets.DetectionPresetTrain(data_augmentation) if train else presets.DetectionPresetEval()
52
53


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def get_args_parser(add_help=True):
    import argparse
    parser = argparse.ArgumentParser(description='PyTorch Detection Training', add_help=add_help)

    parser.add_argument('--data-path', default='/datasets01/COCO/022719/', help='dataset')
    parser.add_argument('--dataset', default='coco', help='dataset')
    parser.add_argument('--model', default='maskrcnn_resnet50_fpn', help='model')
    parser.add_argument('--device', default='cuda', help='device')
    parser.add_argument('-b', '--batch-size', default=2, type=int,
                        help='images per gpu, the total batch size is $NGPU x batch_size')
    parser.add_argument('--epochs', default=26, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                        help='number of data loading workers (default: 4)')
    parser.add_argument('--lr', default=0.02, type=float,
                        help='initial learning rate, 0.02 is the default value for training '
                             'on 8 gpus and 2 images_per_gpu')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--lr-step-size', default=8, type=int, help='decrease lr every step-size epochs')
    parser.add_argument('--lr-steps', default=[16, 22], nargs='+', type=int, help='decrease lr every step-size epochs')
    parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
    parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
    parser.add_argument('--aspect-ratio-group-factor', default=3, type=int)
    parser.add_argument('--rpn-score-thresh', default=None, type=float, help='rpn score threshold for faster-rcnn')
    parser.add_argument('--trainable-backbone-layers', default=None, type=int,
                        help='number of trainable layers of backbone')
    parser.add_argument('--data-augmentation', default="hflip", help='data augmentation policy (default: hflip)')
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )

    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')

    return parser


109
def main(args):
110
111
112
    if args.output_dir:
        utils.mkdir(args.output_dir)

113
114
115
116
117
118
119
120
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

121
122
123
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args.data_augmentation),
                                       args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args.data_augmentation), args.data_path)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
        train_batch_sampler = torch.utils.data.BatchSampler(
            train_sampler, args.batch_size, drop_last=True)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1,
        sampler=test_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

    print("Creating model")
150
151
152
    kwargs = {
        "trainable_backbone_layers": args.trainable_backbone_layers
    }
153
    if "rcnn" in args.model:
154
155
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
156
157
    model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes, pretrained=args.pretrained,
                                                              **kwargs)
158
159
160
161
162
163
164
165
166
167
168
169
170
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(
        params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
Francisco Massa's avatar
Francisco Massa committed
171

172
173
174
175
176
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
MultiK's avatar
MultiK committed
177
        args.start_epoch = checkpoint['epoch'] + 1
Francisco Massa's avatar
Francisco Massa committed
178

179
180
181
182
183
184
    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
185
    for epoch in range(args.start_epoch, args.epochs):
186
187
188
189
190
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
191
            checkpoint = {
192
193
194
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
MultiK's avatar
MultiK committed
195
                'args': args,
196
197
198
199
                'epoch': epoch
            }
            utils.save_on_master(
                checkpoint,
200
                os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
201
202
203
            utils.save_on_master(
                checkpoint,
                os.path.join(args.output_dir, 'checkpoint.pth'))
204
205
206
207
208
209
210
211
212
213

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
214
    args = get_args_parser().parse_args()
215
    main(args)