_meta.py 1.37 KB
Newer Older
1
from typing import Any, Dict, Union
Philip Meier's avatar
Philip Meier committed
2

3
from torchvision import tv_tensors
4
from torchvision.transforms.v2 import functional as F, Transform
5
6
7


class ConvertBoundingBoxFormat(Transform):
8
    """Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY".
vfdev's avatar
vfdev committed
9
10

    Args:
11
12
        format (str or tv_tensors.BoundingBoxFormat): output bounding box format.
            Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and
vfdev's avatar
vfdev committed
13
14
            string values match the enums, e.g. "XYXY" or "XYWH" etc.
    """
Nicolas Hug's avatar
Nicolas Hug committed
15

16
    _transformed_types = (tv_tensors.BoundingBoxes,)
17

18
    def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None:
19
20
21
        super().__init__()
        self.format = format

22
    def _transform(self, inpt: tv_tensors.BoundingBoxes, params: Dict[str, Any]) -> tv_tensors.BoundingBoxes:
23
        return F.convert_bounding_box_format(inpt, new_format=self.format)  # type: ignore[return-value, arg-type]
24
25


26
class ClampBoundingBoxes(Transform):
27
    """Clamp bounding boxes to their corresponding image dimensions.
vfdev's avatar
vfdev committed
28

Philip Meier's avatar
Philip Meier committed
29
    The clamping is done according to the bounding boxes' ``canvas_size`` meta-data.
vfdev's avatar
vfdev committed
30
31

    """
Nicolas Hug's avatar
Nicolas Hug committed
32

33
    _transformed_types = (tv_tensors.BoundingBoxes,)
34

35
    def _transform(self, inpt: tv_tensors.BoundingBoxes, params: Dict[str, Any]) -> tv_tensors.BoundingBoxes:
36
        return F.clamp_bounding_boxes(inpt)  # type: ignore[return-value]