"megatron/inference/text_generation/api.py" did not exist on "fabad46192f78dfac87da5d0198ec3fac972841d"
faster_rcnn.py 22.7 KB
Newer Older
1
import torch.nn.functional as F
2
from torch import nn
3
4
from torchvision.ops import MultiScaleRoIAlign

5
from ..._internally_replaced_utils import load_state_dict_from_url
6
7
8
from ...ops import misc as misc_nn_ops
from ..mobilenetv3 import mobilenet_v3_large
from ..resnet import resnet50
9
from ._utils import overwrite_eps
10
from .anchor_utils import AnchorGenerator
11
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, _mobilenet_extractor
12
13
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
14
from .rpn import RPNHead, RegionProposalNetwork
15
16
17
18
from .transform import GeneralizedRCNNTransform


__all__ = [
19
20
21
22
    "FasterRCNN",
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_mobilenet_v3_large_320_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn",
23
24
25
26
]


class FasterRCNN(GeneralizedRCNN):
27
28
29
30
31
32
33
34
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

35
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
36
    containing:
37
38
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
39
        - labels (Int64Tensor[N]): the class label for each ground-truth box
40

41
42
43
44
45
46
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
47
48
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
49
        - labels (Int64Tensor[N]): the predicted labels for each image
50
        - scores (Tensor[N]): the scores or each prediction
51

52
    Args:
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
82
83
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
106
        >>> import torch
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
130
        >>> # be ['0']. More generally, the backbone should return an
131
132
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
133
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
134
135
136
137
138
139
140
141
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
142
143
144
145
146
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
    ):
182
183
184
185
186

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
187
188
                "same for all the levels)"
            )
189
190
191
192
193
194
195
196
197

        assert isinstance(rpn_anchor_generator, (AnchorGenerator, type(None)))
        assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
198
                raise ValueError("num_classes should not be None when box_predictor is not specified")
199
200
201
202
203
204

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
205
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
206
        if rpn_head is None:
207
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
208
209
210
211
212

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
213
214
215
216
217
218
219
220
221
222
223
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
224
225

        if box_roi_pool is None:
226
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
227
228
229
230

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
231
            box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
232
233
234

        if box_predictor is None:
            representation_size = 1024
235
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
236
237
238

        roi_heads = RoIHeads(
            # Box
239
240
241
242
243
244
245
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
246
            bbox_reg_weights,
247
248
249
250
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
251
252
253
254
255
256
257

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

258
        super().__init__(backbone, rpn, roi_heads, transform)
259
260
261
262


class TwoMLPHead(nn.Module):
    """
263
264
    Standard heads for FPN-based models

265
    Args:
266
267
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
268
269
270
    """

    def __init__(self, in_channels, representation_size):
271
        super().__init__()
272
273
274
275
276
277
278
279
280
281
282
283
284
285

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
286
287
288
289
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

290
    Args:
291
292
293
294
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

295
    def __init__(self, in_channels, num_classes):
296
        super().__init__()
297
298
299
300
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
301
        if x.dim() == 4:
302
303
304
305
306
307
308
309
            assert list(x.shape[2:]) == [1, 1]
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


310
model_urls = {
311
312
313
    "fasterrcnn_resnet50_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
    "fasterrcnn_mobilenet_v3_large_320_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
    "fasterrcnn_mobilenet_v3_large_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
314
315
316
}


317
318
319
def fasterrcnn_resnet50_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
320
321
322
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

323
324
325
    Reference: `"Faster R-CNN: Towards Real-Time Object Detection with
    Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.

326
327
328
329
330
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

331
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
332
    containing:
333

334
335
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
336
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
337
338
339
340
341
342

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
343
    follows, where ``N`` is the number of detections:
344

345
346
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
347
348
349
350
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
351

352
353
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

354
355
356
    Example::

        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
357
358
359
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
        >>> labels = torch.randint(1, 91, (4, 11))
360
        >>> images = list(image for image in images)
361
        >>> targets = []
362
363
364
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
365
        >>>     d['labels'] = labels[i]
366
        >>>     targets.append(d)
367
368
369
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
370
371
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
372
373
374
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
375

376
    Args:
377
378
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
379
        num_classes (int): number of output classes of the model (including the background)
380
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
381
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
382
383
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
384
    """
385
    trainable_backbone_layers = _validate_trainable_layers(
386
387
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3
    )
388

389
390
391
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
392
393
394

    backbone = resnet50(pretrained=pretrained_backbone, progress=progress, norm_layer=misc_nn_ops.FrozenBatchNorm2d)
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
395
396
    model = FasterRCNN(backbone, num_classes, **kwargs)
    if pretrained:
397
        state_dict = load_state_dict_from_url(model_urls["fasterrcnn_resnet50_fpn_coco"], progress=progress)
398
        model.load_state_dict(state_dict)
399
        overwrite_eps(model, 0.0)
400
    return model
401
402


403
404
405
406
407
408
409
410
411
def _fasterrcnn_mobilenet_v3_large_fpn(
    weights_name,
    pretrained=False,
    progress=True,
    num_classes=91,
    pretrained_backbone=True,
    trainable_backbone_layers=None,
    **kwargs,
):
412
    trainable_backbone_layers = _validate_trainable_layers(
413
414
        pretrained or pretrained_backbone, trainable_backbone_layers, 6, 3
    )
415
416
417

    if pretrained:
        pretrained_backbone = False
418
419
420

    backbone = mobilenet_v3_large(
        pretrained=pretrained_backbone, progress=progress, norm_layer=misc_nn_ops.FrozenBatchNorm2d
421
    )
422
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
423
424
425
426
427
428
429
430
431
432

    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
433
434
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)

435
436
437
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
438
439
    if pretrained:
        if model_urls.get(weights_name, None) is None:
440
            raise ValueError(f"No checkpoint is available for model {weights_name}")
441
442
443
444
445
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model


446
447
448
def fasterrcnn_mobilenet_v3_large_320_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
449
    """
450
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
451
452
453
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
454
455
456

    Example::

457
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)
458
459
460
461
462
463
464
465
466
467
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
468
469
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
470
    """
471
472
473
474
475
476
477
478
    weights_name = "fasterrcnn_mobilenet_v3_large_320_fpn_coco"
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
479

480
    kwargs = {**defaults, **kwargs}
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights_name,
        pretrained=pretrained,
        progress=progress,
        num_classes=num_classes,
        pretrained_backbone=pretrained_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


def fasterrcnn_mobilenet_v3_large_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
495
496
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
497
498
499
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
500
501
502
503
504
505
506
507
508
509
510
511
512
513

    Example::

        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
514
515
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
516
517
518
519
520
521
522
    """
    weights_name = "fasterrcnn_mobilenet_v3_large_fpn_coco"
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
523
524
525
526
527
528
529
530
531
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights_name,
        pretrained=pretrained,
        progress=progress,
        num_classes=num_classes,
        pretrained_backbone=pretrained_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )