transforms.py 6.46 KB
Newer Older
1
2
import math
from typing import Tuple
3
4

import torch
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from torch import Tensor
from torchvision.transforms import functional as F


class RandomMixup(torch.nn.Module):
    """Randomly apply Mixup to the provided batch and targets.
    The class implements the data augmentations as described in the paper
    `"mixup: Beyond Empirical Risk Minimization" <https://arxiv.org/abs/1710.09412>`_.

    Args:
        num_classes (int): number of classes used for one-hot encoding.
        p (float): probability of the batch being transformed. Default value is 0.5.
        alpha (float): hyperparameter of the Beta distribution used for mixup.
            Default value is 1.0.
        inplace (bool): boolean to make this transform inplace. Default set to False.
    """

22
    def __init__(self, num_classes: int, p: float = 0.5, alpha: float = 1.0, inplace: bool = False) -> None:
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        super().__init__()
        assert num_classes > 0, "Please provide a valid positive value for the num_classes."
        assert alpha > 0, "Alpha param can't be zero."

        self.num_classes = num_classes
        self.p = p
        self.alpha = alpha
        self.inplace = inplace

    def forward(self, batch: Tensor, target: Tensor) -> Tuple[Tensor, Tensor]:
        """
        Args:
            batch (Tensor): Float tensor of size (B, C, H, W)
            target (Tensor): Integer tensor of size (B, )

        Returns:
            Tensor: Randomly transformed batch.
        """
        if batch.ndim != 4:
42
43
44
45
46
47
48
            raise ValueError(f"Batch ndim should be 4. Got {batch.ndim}")
        if target.ndim != 1:
            raise ValueError(f"Target ndim should be 1. Got {target.ndim}")
        if not batch.is_floating_point():
            raise TypeError(f"Batch dtype should be a float tensor. Got {batch.dtype}.")
        if target.dtype != torch.int64:
            raise TypeError(f"Target dtype should be torch.int64. Got {target.dtype}")
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

        if not self.inplace:
            batch = batch.clone()
            target = target.clone()

        if target.ndim == 1:
            target = torch.nn.functional.one_hot(target, num_classes=self.num_classes).to(dtype=batch.dtype)

        if torch.rand(1).item() >= self.p:
            return batch, target

        # It's faster to roll the batch by one instead of shuffling it to create image pairs
        batch_rolled = batch.roll(1, 0)
        target_rolled = target.roll(1, 0)

        # Implemented as on mixup paper, page 3.
        lambda_param = float(torch._sample_dirichlet(torch.tensor([self.alpha, self.alpha]))[0])
        batch_rolled.mul_(1.0 - lambda_param)
        batch.mul_(lambda_param).add_(batch_rolled)

        target_rolled.mul_(1.0 - lambda_param)
        target.mul_(lambda_param).add_(target_rolled)

        return batch, target

    def __repr__(self) -> str:
Joao Gomes's avatar
Joao Gomes committed
75
76
77
78
79
80
81
82
83
        s = (
            f"{self.__class__.__name__}("
            f"num_classes={self.num_classes}"
            f", p={self.p}"
            f", alpha={self.alpha}"
            f", inplace={self.inplace}"
            f")"
        )
        return s
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


class RandomCutmix(torch.nn.Module):
    """Randomly apply Cutmix to the provided batch and targets.
    The class implements the data augmentations as described in the paper
    `"CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features"
    <https://arxiv.org/abs/1905.04899>`_.

    Args:
        num_classes (int): number of classes used for one-hot encoding.
        p (float): probability of the batch being transformed. Default value is 0.5.
        alpha (float): hyperparameter of the Beta distribution used for cutmix.
            Default value is 1.0.
        inplace (bool): boolean to make this transform inplace. Default set to False.
    """

100
    def __init__(self, num_classes: int, p: float = 0.5, alpha: float = 1.0, inplace: bool = False) -> None:
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        super().__init__()
        assert num_classes > 0, "Please provide a valid positive value for the num_classes."
        assert alpha > 0, "Alpha param can't be zero."

        self.num_classes = num_classes
        self.p = p
        self.alpha = alpha
        self.inplace = inplace

    def forward(self, batch: Tensor, target: Tensor) -> Tuple[Tensor, Tensor]:
        """
        Args:
            batch (Tensor): Float tensor of size (B, C, H, W)
            target (Tensor): Integer tensor of size (B, )

        Returns:
            Tensor: Randomly transformed batch.
        """
        if batch.ndim != 4:
120
121
122
123
124
125
126
            raise ValueError(f"Batch ndim should be 4. Got {batch.ndim}")
        if target.ndim != 1:
            raise ValueError(f"Target ndim should be 1. Got {target.ndim}")
        if not batch.is_floating_point():
            raise TypeError(f"Batch dtype should be a float tensor. Got {batch.dtype}.")
        if target.dtype != torch.int64:
            raise TypeError(f"Target dtype should be torch.int64. Got {target.dtype}")
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        if not self.inplace:
            batch = batch.clone()
            target = target.clone()

        if target.ndim == 1:
            target = torch.nn.functional.one_hot(target, num_classes=self.num_classes).to(dtype=batch.dtype)

        if torch.rand(1).item() >= self.p:
            return batch, target

        # It's faster to roll the batch by one instead of shuffling it to create image pairs
        batch_rolled = batch.roll(1, 0)
        target_rolled = target.roll(1, 0)

        # Implemented as on cutmix paper, page 12 (with minor corrections on typos).
        lambda_param = float(torch._sample_dirichlet(torch.tensor([self.alpha, self.alpha]))[0])
144
        _, H, W = F.get_dimensions(batch)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

        r_x = torch.randint(W, (1,))
        r_y = torch.randint(H, (1,))

        r = 0.5 * math.sqrt(1.0 - lambda_param)
        r_w_half = int(r * W)
        r_h_half = int(r * H)

        x1 = int(torch.clamp(r_x - r_w_half, min=0))
        y1 = int(torch.clamp(r_y - r_h_half, min=0))
        x2 = int(torch.clamp(r_x + r_w_half, max=W))
        y2 = int(torch.clamp(r_y + r_h_half, max=H))

        batch[:, :, y1:y2, x1:x2] = batch_rolled[:, :, y1:y2, x1:x2]
        lambda_param = float(1.0 - (x2 - x1) * (y2 - y1) / (W * H))

        target_rolled.mul_(1.0 - lambda_param)
        target.mul_(lambda_param).add_(target_rolled)

        return batch, target

    def __repr__(self) -> str:
Joao Gomes's avatar
Joao Gomes committed
167
168
169
170
171
172
173
174
175
        s = (
            f"{self.__class__.__name__}("
            f"num_classes={self.num_classes}"
            f", p={self.p}"
            f", alpha={self.alpha}"
            f", inplace={self.inplace}"
            f")"
        )
        return s