misc.py 5.05 KB
Newer Older
eellison's avatar
eellison committed
1
2
3
from collections import OrderedDict
from torch.jit.annotations import Optional, List
from torch import Tensor
4
5
6
7
8
9
10
11
12
13
14
15

"""
helper class that supports empty tensors on some nn functions.

Ideally, add support directly in PyTorch to empty tensors in
those functions.

This can be removed once https://github.com/pytorch/pytorch/issues/12013
is implemented
"""

import math
16
import warnings
17
import torch
eellison's avatar
eellison committed
18
19
20
from torchvision.ops import _new_empty_tensor


21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class Conv2d(torch.nn.Conv2d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        warnings.warn(
            "torchvision.ops.misc.Conv2d is deprecated and will be "
            "removed in future versions, use torch.nn.Conv2d instead.", FutureWarning)


class ConvTranspose2d(torch.nn.ConvTranspose2d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        warnings.warn(
            "torchvision.ops.misc.ConvTranspose2d is deprecated and will be "
            "removed in future versions, use torch.nn.ConvTranspose2d instead.", FutureWarning)


class BatchNorm2d(torch.nn.BatchNorm2d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        warnings.warn(
            "torchvision.ops.misc.BatchNorm2d is deprecated and will be "
            "removed in future versions, use torch.nn.BatchNorm2d instead.", FutureWarning)


eellison's avatar
eellison committed
45
46
47
48
49
50
def _check_size_scale_factor(dim, size, scale_factor):
    # type: (int, Optional[List[int]], Optional[float]) -> None
    if size is None and scale_factor is None:
        raise ValueError("either size or scale_factor should be defined")
    if size is not None and scale_factor is not None:
        raise ValueError("only one of size or scale_factor should be defined")
51
    if scale_factor is not None:
eellison's avatar
eellison committed
52
53
54
55
56
57
        if isinstance(scale_factor, (list, tuple)):
            if len(scale_factor) != dim:
                raise ValueError(
                    "scale_factor shape must match input shape. "
                    "Input is {}D, scale_factor size is {}".format(dim, len(scale_factor))
                )
58
59


eellison's avatar
eellison committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def _output_size(dim, input, size, scale_factor):
    # type: (int, Tensor, Optional[List[int]], Optional[float]) -> List[int]
    assert dim == 2
    _check_size_scale_factor(dim, size, scale_factor)
    if size is not None:
        return size
    # if dim is not 2 or scale_factor is iterable use _ntuple instead of concat
    assert scale_factor is not None and isinstance(scale_factor, (int, float))
    scale_factors = [scale_factor, scale_factor]
    # math.floor might return float in py2.7
    return [
        int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)
    ]


def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
    # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
77
78
79
80
81
    """
    Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
    This will eventually be supported natively by PyTorch, and this
    class can go away.
    """
82
83
84
85
86
    if input.numel() > 0:
        return torch.nn.functional.interpolate(
            input, size, scale_factor, mode, align_corners
        )

eellison's avatar
eellison committed
87
    output_shape = _output_size(2, input, size, scale_factor)
88
    output_shape = list(input.shape[:-2]) + list(output_shape)
eellison's avatar
eellison committed
89
    return _new_empty_tensor(input, output_shape)
90
91
92


# This is not in nn
93
class FrozenBatchNorm2d(torch.nn.Module):
94
95
96
97
98
    """
    BatchNorm2d where the batch statistics and the affine parameters
    are fixed
    """

99
100
101
102
103
104
    def __init__(self, num_features, eps=0., n=None):
        # n=None for backward-compatibility
        if n is not None:
            warnings.warn("`n` argument is deprecated and has been renamed `num_features`",
                          DeprecationWarning)
            num_features = n
105
        super(FrozenBatchNorm2d, self).__init__()
106
107
108
109
110
        self.eps = eps
        self.register_buffer("weight", torch.ones(num_features))
        self.register_buffer("bias", torch.zeros(num_features))
        self.register_buffer("running_mean", torch.zeros(num_features))
        self.register_buffer("running_var", torch.ones(num_features))
111

112
113
114
115
116
117
118
119
120
121
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        num_batches_tracked_key = prefix + 'num_batches_tracked'
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super(FrozenBatchNorm2d, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict,
            missing_keys, unexpected_keys, error_msgs)

122
123
124
125
126
127
128
    def forward(self, x):
        # move reshapes to the beginning
        # to make it fuser-friendly
        w = self.weight.reshape(1, -1, 1, 1)
        b = self.bias.reshape(1, -1, 1, 1)
        rv = self.running_var.reshape(1, -1, 1, 1)
        rm = self.running_mean.reshape(1, -1, 1, 1)
129
        scale = w * (rv + self.eps).rsqrt()
130
131
        bias = b - rm * scale
        return x * scale + bias
132
133
134

    def __repr__(self):
        return f"{self.__class__.__name__}({self.weight.shape[0]})"