squeezenet.py 5.61 KB
Newer Older
1
2
import torch
import torch.nn as nn
3
import torch.nn.init as init
4
from .utils import load_state_dict_from_url
5
from typing import Any
6
7
8
9

__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1']

model_urls = {
10
11
    'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
    'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
12
13
14
15
}


class Fire(nn.Module):
16

17
18
19
20
21
22
    def __init__(
        self,
        inplanes: int,
        squeeze_planes: int,
        expand1x1_planes: int,
        expand3x3_planes: int
23
    ) -> None:
24
25
26
27
28
29
30
31
32
33
34
        super(Fire, self).__init__()
        self.inplanes = inplanes
        self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
        self.squeeze_activation = nn.ReLU(inplace=True)
        self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
                                   kernel_size=1)
        self.expand1x1_activation = nn.ReLU(inplace=True)
        self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
                                   kernel_size=3, padding=1)
        self.expand3x3_activation = nn.ReLU(inplace=True)

35
    def forward(self, x: torch.Tensor) -> torch.Tensor:
36
37
38
39
40
41
42
43
        x = self.squeeze_activation(self.squeeze(x))
        return torch.cat([
            self.expand1x1_activation(self.expand1x1(x)),
            self.expand3x3_activation(self.expand3x3(x))
        ], 1)


class SqueezeNet(nn.Module):
44

45
46
47
48
    def __init__(
        self,
        version: str = '1_0',
        num_classes: int = 1000
49
    ) -> None:
50
51
        super(SqueezeNet, self).__init__()
        self.num_classes = num_classes
52
        if version == '1_0':
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            self.features = nn.Sequential(
                nn.Conv2d(3, 96, kernel_size=7, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(96, 16, 64, 64),
                Fire(128, 16, 64, 64),
                Fire(128, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 32, 128, 128),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(512, 64, 256, 256),
            )
68
        elif version == '1_1':
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(64, 16, 64, 64),
                Fire(128, 16, 64, 64),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(128, 32, 128, 128),
                Fire(256, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                Fire(512, 64, 256, 256),
            )
84
85
86
87
88
89
90
        else:
            # FIXME: Is this needed? SqueezeNet should only be called from the
            # FIXME: squeezenet1_x() functions
            # FIXME: This checking is not done for the other models
            raise ValueError("Unsupported SqueezeNet version {version}:"
                             "1_0 or 1_1 expected".format(version=version))

Allan Wang's avatar
Allan Wang committed
91
        # Final convolution is initialized differently from the rest
Sri Krishna's avatar
Sri Krishna committed
92
        final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
93
94
95
96
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            final_conv,
            nn.ReLU(inplace=True),
97
            nn.AdaptiveAvgPool2d((1, 1))
98
99
100
101
102
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m is final_conv:
103
                    init.normal_(m.weight, mean=0.0, std=0.01)
104
                else:
105
                    init.kaiming_uniform_(m.weight)
106
                if m.bias is not None:
107
                    init.constant_(m.bias, 0)
108

109
    def forward(self, x: torch.Tensor) -> torch.Tensor:
110
111
        x = self.features(x)
        x = self.classifier(x)
112
        return torch.flatten(x, 1)
113
114


115
def _squeezenet(version: str, pretrained: bool, progress: bool, **kwargs: Any) -> SqueezeNet:
116
117
118
119
120
121
122
123
124
    model = SqueezeNet(version, **kwargs)
    if pretrained:
        arch = 'squeezenet' + version
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model


125
def squeezenet1_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> SqueezeNet:
126
127
128
129
130
131
    r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
    accuracy with 50x fewer parameters and <0.5MB model size"
    <https://arxiv.org/abs/1602.07360>`_ paper.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
132
        progress (bool): If True, displays a progress bar of the download to stderr
133
    """
134
    return _squeezenet('1_0', pretrained, progress, **kwargs)
135
136


137
def squeezenet1_1(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> SqueezeNet:
138
139
140
141
142
143
144
    r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
    <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
    SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
    than SqueezeNet 1.0, without sacrificing accuracy.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
145
        progress (bool): If True, displays a progress bar of the download to stderr
146
    """
147
    return _squeezenet('1_1', pretrained, progress, **kwargs)