swin_transformer.py 22.6 KB
Newer Older
1
2
3
4
5
6
7
from functools import partial
from typing import Optional, Callable, List, Any

import torch
import torch.nn.functional as F
from torch import nn, Tensor

8
from ..ops.misc import MLP, Permute
9
10
11
12
13
14
15
16
17
18
19
from ..ops.stochastic_depth import StochasticDepth
from ..transforms._presets import ImageClassification, InterpolationMode
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param


__all__ = [
    "SwinTransformer",
    "Swin_T_Weights",
20
21
    "Swin_S_Weights",
    "Swin_B_Weights",
22
    "swin_t",
23
24
    "swin_s",
    "swin_b",
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
]


class PatchMerging(nn.Module):
    """Patch Merging Layer.
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
    """

    def __init__(self, dim: int, norm_layer: Callable[..., nn.Module] = nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x: Tensor):
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        """
        Args:
            x (Tensor): input tensor with expected layout of [..., H, W, C]
        Returns:
            Tensor with layout of [..., H/2, W/2, 2*C]
        """
        H, W, _ = x.shape[-3:]
        x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        x0 = x[..., 0::2, 0::2, :]  # ... H/2 W/2 C
        x1 = x[..., 1::2, 0::2, :]  # ... H/2 W/2 C
        x2 = x[..., 0::2, 1::2, :]  # ... H/2 W/2 C
        x3 = x[..., 1::2, 1::2, :]  # ... H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # ... H/2 W/2 4*C
56
57

        x = self.norm(x)
58
        x = self.reduction(x)  # ... H/2 W/2 2*C
59
60
61
62
63
64
65
66
        return x


def shifted_window_attention(
    input: Tensor,
    qkv_weight: Tensor,
    proj_weight: Tensor,
    relative_position_bias: Tensor,
67
    window_size: List[int],
68
    num_heads: int,
69
    shift_size: List[int],
70
71
72
73
74
75
76
77
78
79
80
81
82
    attention_dropout: float = 0.0,
    dropout: float = 0.0,
    qkv_bias: Optional[Tensor] = None,
    proj_bias: Optional[Tensor] = None,
):
    """
    Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        input (Tensor[N, H, W, C]): The input tensor or 4-dimensions.
        qkv_weight (Tensor[in_dim, out_dim]): The weight tensor of query, key, value.
        proj_weight (Tensor[out_dim, out_dim]): The weight tensor of projection.
        relative_position_bias (Tensor): The learned relative position bias added to attention.
83
        window_size (List[int]): Window size.
84
        num_heads (int): Number of attention heads.
85
        shift_size (List[int]): Shift size for shifted window attention.
86
87
88
89
90
91
92
93
94
        attention_dropout (float): Dropout ratio of attention weight. Default: 0.0.
        dropout (float): Dropout ratio of output. Default: 0.0.
        qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
        proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
    Returns:
        Tensor[N, H, W, C]: The output tensor after shifted window attention.
    """
    B, H, W, C = input.shape
    # pad feature maps to multiples of window size
95
96
    pad_r = (window_size[1] - W % window_size[1]) % window_size[1]
    pad_b = (window_size[0] - H % window_size[0]) % window_size[0]
97
98
99
    x = F.pad(input, (0, 0, 0, pad_r, 0, pad_b))
    _, pad_H, pad_W, _ = x.shape

100
101
102
103
104
    # If window size is larger than feature size, there is no need to shift window
    if window_size[0] >= pad_H:
        shift_size[0] = 0
    if window_size[1] >= pad_W:
        shift_size[1] = 0
105
106

    # cyclic shift
107
108
    if sum(shift_size) > 0:
        x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2))
109
110

    # partition windows
111
112
113
    num_windows = (pad_H // window_size[0]) * (pad_W // window_size[1])
    x = x.view(B, pad_H // window_size[0], window_size[0], pad_W // window_size[1], window_size[1], C)
    x = x.permute(0, 1, 3, 2, 4, 5).reshape(B * num_windows, window_size[0] * window_size[1], C)  # B*nW, Ws*Ws, C
114
115
116
117
118
119
120
121
122
123

    # multi-head attention
    qkv = F.linear(x, qkv_weight, qkv_bias)
    qkv = qkv.reshape(x.size(0), x.size(1), 3, num_heads, C // num_heads).permute(2, 0, 3, 1, 4)
    q, k, v = qkv[0], qkv[1], qkv[2]
    q = q * (C // num_heads) ** -0.5
    attn = q.matmul(k.transpose(-2, -1))
    # add relative position bias
    attn = attn + relative_position_bias

124
    if sum(shift_size) > 0:
125
126
        # generate attention mask
        attn_mask = x.new_zeros((pad_H, pad_W))
127
128
        h_slices = ((0, -window_size[0]), (-window_size[0], -shift_size[0]), (-shift_size[0], None))
        w_slices = ((0, -window_size[1]), (-window_size[1], -shift_size[1]), (-shift_size[1], None))
129
        count = 0
130
131
        for h in h_slices:
            for w in w_slices:
132
133
                attn_mask[h[0] : h[1], w[0] : w[1]] = count
                count += 1
134
135
        attn_mask = attn_mask.view(pad_H // window_size[0], window_size[0], pad_W // window_size[1], window_size[1])
        attn_mask = attn_mask.permute(0, 2, 1, 3).reshape(num_windows, window_size[0] * window_size[1])
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        attn_mask = attn_mask.unsqueeze(1) - attn_mask.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        attn = attn.view(x.size(0) // num_windows, num_windows, num_heads, x.size(1), x.size(1))
        attn = attn + attn_mask.unsqueeze(1).unsqueeze(0)
        attn = attn.view(-1, num_heads, x.size(1), x.size(1))

    attn = F.softmax(attn, dim=-1)
    attn = F.dropout(attn, p=attention_dropout)

    x = attn.matmul(v).transpose(1, 2).reshape(x.size(0), x.size(1), C)
    x = F.linear(x, proj_weight, proj_bias)
    x = F.dropout(x, p=dropout)

    # reverse windows
150
    x = x.view(B, pad_H // window_size[0], pad_W // window_size[1], window_size[0], window_size[1], C)
151
152
153
    x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, pad_H, pad_W, C)

    # reverse cyclic shift
154
155
    if sum(shift_size) > 0:
        x = torch.roll(x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2))
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    # unpad features
    x = x[:, :H, :W, :].contiguous()
    return x


torch.fx.wrap("shifted_window_attention")


class ShiftedWindowAttention(nn.Module):
    """
    See :func:`shifted_window_attention`.
    """

    def __init__(
        self,
        dim: int,
173
174
        window_size: List[int],
        shift_size: List[int],
175
176
177
178
179
180
181
        num_heads: int,
        qkv_bias: bool = True,
        proj_bias: bool = True,
        attention_dropout: float = 0.0,
        dropout: float = 0.0,
    ):
        super().__init__()
182
183
        if len(window_size) != 2 or len(shift_size) != 2:
            raise ValueError("window_size and shift_size must be of length 2")
184
185
186
187
188
189
190
191
192
193
194
        self.window_size = window_size
        self.shift_size = shift_size
        self.num_heads = num_heads
        self.attention_dropout = attention_dropout
        self.dropout = dropout

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim, bias=proj_bias)

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
195
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
196
197
198
        )  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
199
200
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
201
202
203
204
        coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij"))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
205
206
207
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
208
209
210
211
212
213
        relative_position_index = relative_coords.sum(-1).view(-1)  # Wh*Ww*Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)

    def forward(self, x: Tensor):
214
215
216
217
218
219
220
221
        """
        Args:
            x (Tensor): Tensor with layout of [B, H, W, C]
        Returns:
            Tensor with same layout as input, i.e. [B, H, W, C]
        """

        N = self.window_size[0] * self.window_size[1]
222
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index]  # type: ignore[index]
223
        relative_position_bias = relative_position_bias.view(N, N, -1)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0)

        return shifted_window_attention(
            x,
            self.qkv.weight,
            self.proj.weight,
            relative_position_bias,
            self.window_size,
            self.num_heads,
            shift_size=self.shift_size,
            attention_dropout=self.attention_dropout,
            dropout=self.dropout,
            qkv_bias=self.qkv.bias,
            proj_bias=self.proj.bias,
        )


class SwinTransformerBlock(nn.Module):
    """
    Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
247
248
        window_size (List[int]): Window size.
        shift_size (List[int]): Shift size for shifted window attention.
249
250
251
252
253
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
        dropout (float): Dropout rate. Default: 0.0.
        attention_dropout (float): Attention dropout rate. Default: 0.0.
        stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0.
        norm_layer (nn.Module): Normalization layer.  Default: nn.LayerNorm.
254
        attn_layer (nn.Module): Attention layer. Default: ShiftedWindowAttention
255
256
257
258
259
260
    """

    def __init__(
        self,
        dim: int,
        num_heads: int,
261
262
        window_size: List[int],
        shift_size: List[int],
263
264
265
266
267
        mlp_ratio: float = 4.0,
        dropout: float = 0.0,
        attention_dropout: float = 0.0,
        stochastic_depth_prob: float = 0.0,
        norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
268
        attn_layer: Callable[..., nn.Module] = ShiftedWindowAttention,
269
270
271
272
    ):
        super().__init__()

        self.norm1 = norm_layer(dim)
273
        self.attn = attn_layer(
274
275
276
277
278
279
280
281
282
            dim,
            window_size,
            shift_size,
            num_heads,
            attention_dropout=attention_dropout,
            dropout=dropout,
        )
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.norm2 = norm_layer(dim)
283
284
285
286
287
288
289
        self.mlp = MLP(dim, [int(dim * mlp_ratio), dim], activation_layer=nn.GELU, inplace=None, dropout=dropout)

        for m in self.mlp.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.normal_(m.bias, std=1e-6)
290
291
292
293
294
295
296
297
298
299
300
301

    def forward(self, x: Tensor):
        x = x + self.stochastic_depth(self.attn(self.norm1(x)))
        x = x + self.stochastic_depth(self.mlp(self.norm2(x)))
        return x


class SwinTransformer(nn.Module):
    """
    Implements Swin Transformer from the `"Swin Transformer: Hierarchical Vision Transformer using
    Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_ paper.
    Args:
302
        patch_size (List[int]): Patch size.
303
304
305
        embed_dim (int): Patch embedding dimension.
        depths (List(int)): Depth of each Swin Transformer layer.
        num_heads (List(int)): Number of attention heads in different layers.
306
        window_size (List[int]): Window size.
307
308
309
310
311
312
313
314
315
316
317
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
        dropout (float): Dropout rate. Default: 0.0.
        attention_dropout (float): Attention dropout rate. Default: 0.0.
        stochastic_depth_prob (float): Stochastic depth rate. Default: 0.0.
        num_classes (int): Number of classes for classification head. Default: 1000.
        block (nn.Module, optional): SwinTransformer Block. Default: None.
        norm_layer (nn.Module, optional): Normalization layer. Default: None.
    """

    def __init__(
        self,
318
        patch_size: List[int],
319
320
321
        embed_dim: int,
        depths: List[int],
        num_heads: List[int],
322
        window_size: List[int],
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        mlp_ratio: float = 4.0,
        dropout: float = 0.0,
        attention_dropout: float = 0.0,
        stochastic_depth_prob: float = 0.0,
        num_classes: int = 1000,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        block: Optional[Callable[..., nn.Module]] = None,
    ):
        super().__init__()
        _log_api_usage_once(self)
        self.num_classes = num_classes

        if block is None:
            block = SwinTransformerBlock

        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-5)

        layers: List[nn.Module] = []
        # split image into non-overlapping patches
        layers.append(
            nn.Sequential(
345
346
347
                nn.Conv2d(
                    3, embed_dim, kernel_size=(patch_size[0], patch_size[1]), stride=(patch_size[0], patch_size[1])
                ),
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
                Permute([0, 2, 3, 1]),
                norm_layer(embed_dim),
            )
        )

        total_stage_blocks = sum(depths)
        stage_block_id = 0
        # build SwinTransformer blocks
        for i_stage in range(len(depths)):
            stage: List[nn.Module] = []
            dim = embed_dim * 2 ** i_stage
            for i_layer in range(depths[i_stage]):
                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * float(stage_block_id) / (total_stage_blocks - 1)
                stage.append(
                    block(
                        dim,
                        num_heads[i_stage],
                        window_size=window_size,
367
                        shift_size=[0 if i_layer % 2 == 0 else w // 2 for w in window_size],
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
                        mlp_ratio=mlp_ratio,
                        dropout=dropout,
                        attention_dropout=attention_dropout,
                        stochastic_depth_prob=sd_prob,
                        norm_layer=norm_layer,
                    )
                )
                stage_block_id += 1
            layers.append(nn.Sequential(*stage))
            # add patch merging layer
            if i_stage < (len(depths) - 1):
                layers.append(PatchMerging(dim, norm_layer))
        self.features = nn.Sequential(*layers)

        num_features = embed_dim * 2 ** (len(depths) - 1)
        self.norm = norm_layer(num_features)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.head = nn.Linear(num_features, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def forward(self, x):
        x = self.features(x)
        x = self.norm(x)
        x = x.permute(0, 3, 1, 2)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.head(x)
        return x


def _swin_transformer(
404
    patch_size: List[int],
405
406
407
    embed_dim: int,
    depths: List[int],
    num_heads: List[int],
408
    window_size: List[int],
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    stochastic_depth_prob: float,
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> SwinTransformer:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = SwinTransformer(
        patch_size=patch_size,
        embed_dim=embed_dim,
        depths=depths,
        num_heads=num_heads,
        window_size=window_size,
        stochastic_depth_prob=stochastic_depth_prob,
        **kwargs,
    )

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

    return model


_COMMON_META = {
    "categories": _IMAGENET_CATEGORIES,
}


class Swin_T_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
440
        url="https://download.pytorch.org/models/swin_t-704ceda3.pth",
441
        transforms=partial(
442
            ImageClassification, crop_size=224, resize_size=232, interpolation=InterpolationMode.BICUBIC
443
444
445
446
447
        ),
        meta={
            **_COMMON_META,
            "num_params": 28288354,
            "min_size": (224, 224),
448
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer",
449
450
            "_metrics": {
                "ImageNet-1K": {
451
452
453
454
455
456
457
458
459
460
461
462
                    "acc@1": 81.474,
                    "acc@5": 95.776,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""",
        },
    )
    DEFAULT = IMAGENET1K_V1


class Swin_S_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
463
        url="https://download.pytorch.org/models/swin_s-5e29d889.pth",
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=246, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META,
            "num_params": 49606258,
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.196,
                    "acc@5": 96.360,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""",
        },
    )
    DEFAULT = IMAGENET1K_V1


class Swin_B_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
486
        url="https://download.pytorch.org/models/swin_b-68c6b09e.pth",
487
488
489
490
491
492
493
494
495
496
497
498
        transforms=partial(
            ImageClassification, crop_size=224, resize_size=238, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_META,
            "num_params": 87768224,
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.582,
                    "acc@5": 96.640,
499
                }
500
            },
501
            "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""",
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        },
    )
    DEFAULT = IMAGENET1K_V1


def swin_t(*, weights: Optional[Swin_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer:
    """
    Constructs a swin_tiny architecture from
    `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/pdf/2103.14030>`_.

    Args:
        weights (:class:`~torchvision.models.Swin_T_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Swin_T_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.Swin_T_Weights
        :members:
    """
    weights = Swin_T_Weights.verify(weights)

    return _swin_transformer(
531
        patch_size=[4, 4],
532
533
534
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
535
        window_size=[7, 7],
536
537
538
539
540
        stochastic_depth_prob=0.2,
        weights=weights,
        progress=progress,
        **kwargs,
    )
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566


def swin_s(*, weights: Optional[Swin_S_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer:
    """
    Constructs a swin_small architecture from
    `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/pdf/2103.14030>`_.

    Args:
        weights (:class:`~torchvision.models.Swin_S_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Swin_S_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.Swin_S_Weights
        :members:
    """
    weights = Swin_S_Weights.verify(weights)

    return _swin_transformer(
567
        patch_size=[4, 4],
568
569
570
        embed_dim=96,
        depths=[2, 2, 18, 2],
        num_heads=[3, 6, 12, 24],
571
        window_size=[7, 7],
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        stochastic_depth_prob=0.3,
        weights=weights,
        progress=progress,
        **kwargs,
    )


def swin_b(*, weights: Optional[Swin_B_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer:
    """
    Constructs a swin_base architecture from
    `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/pdf/2103.14030>`_.

    Args:
        weights (:class:`~torchvision.models.Swin_B_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Swin_B_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.Swin_B_Weights
        :members:
    """
    weights = Swin_B_Weights.verify(weights)

    return _swin_transformer(
603
        patch_size=[4, 4],
604
605
606
        embed_dim=128,
        depths=[2, 2, 18, 2],
        num_heads=[4, 8, 16, 32],
607
        window_size=[7, 7],
608
609
610
611
612
        stochastic_depth_prob=0.5,
        weights=weights,
        progress=progress,
        **kwargs,
    )