_auto_augment.py 30.6 KB
Newer Older
1
import math
2
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
3
4
5

import PIL.Image
import torch
6

7
from torch.utils._pytree import tree_flatten, tree_unflatten, TreeSpec
8
from torchvision import datapoints, transforms as _transforms
9
from torchvision.transforms import _functional_tensor as _FT
10
11
12
from torchvision.transforms.v2 import AutoAugmentPolicy, functional as F, InterpolationMode, Transform
from torchvision.transforms.v2.functional._geometry import _check_interpolation
from torchvision.transforms.v2.functional._meta import get_spatial_size
13

14
from ._utils import _setup_fill_arg
15
from .utils import check_type, is_simple_tensor
16
17
18
19


class _AutoAugmentBase(Transform):
    def __init__(
20
21
        self,
        *,
22
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
23
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = None,
24
25
    ) -> None:
        super().__init__()
26
        self.interpolation = _check_interpolation(interpolation)
vfdev's avatar
vfdev committed
27
        self.fill = _setup_fill_arg(fill)
28

29
    def _get_random_item(self, dct: Dict[str, Tuple[Callable, bool]]) -> Tuple[str, Tuple[Callable, bool]]:
30
31
32
33
        keys = tuple(dct.keys())
        key = keys[int(torch.randint(len(keys), ()))]
        return key, dct[key]

34
    def _flatten_and_extract_image_or_video(
35
        self,
36
        inputs: Any,
37
        unsupported_types: Tuple[Type, ...] = (datapoints.BoundingBox, datapoints.Mask),
Philip Meier's avatar
Philip Meier committed
38
    ) -> Tuple[Tuple[List[Any], TreeSpec, int], Union[datapoints._ImageType, datapoints._VideoType]]:
39
        flat_inputs, spec = tree_flatten(inputs if len(inputs) > 1 else inputs[0])
40
        needs_transform_list = self._needs_transform_list(flat_inputs)
41

42
        image_or_videos = []
43
44
        for idx, (inpt, needs_transform) in enumerate(zip(flat_inputs, needs_transform_list)):
            if needs_transform and check_type(
45
46
47
48
49
50
51
52
                inpt,
                (
                    datapoints.Image,
                    PIL.Image.Image,
                    is_simple_tensor,
                    datapoints.Video,
                ),
            ):
53
                image_or_videos.append((idx, inpt))
54
55
56
            elif isinstance(inpt, unsupported_types):
                raise TypeError(f"Inputs of type {type(inpt).__name__} are not supported by {type(self).__name__}()")

57
        if not image_or_videos:
58
            raise TypeError("Found no image in the sample.")
59
        if len(image_or_videos) > 1:
60
            raise TypeError(
61
62
                f"Auto augment transformations are only properly defined for a single image or video, "
                f"but found {len(image_or_videos)}."
63
64
            )

65
66
67
68
69
70
        idx, image_or_video = image_or_videos[0]
        return (flat_inputs, spec, idx), image_or_video

    def _unflatten_and_insert_image_or_video(
        self,
        flat_inputs_with_spec: Tuple[List[Any], TreeSpec, int],
Philip Meier's avatar
Philip Meier committed
71
        image_or_video: Union[datapoints._ImageType, datapoints._VideoType],
72
73
74
75
    ) -> Any:
        flat_inputs, spec, idx = flat_inputs_with_spec
        flat_inputs[idx] = image_or_video
        return tree_unflatten(flat_inputs, spec)
76

77
    def _apply_image_or_video_transform(
78
        self,
Philip Meier's avatar
Philip Meier committed
79
        image: Union[datapoints._ImageType, datapoints._VideoType],
80
81
        transform_id: str,
        magnitude: float,
82
        interpolation: Union[InterpolationMode, int],
Philip Meier's avatar
Philip Meier committed
83
84
        fill: Dict[Type, datapoints._FillTypeJIT],
    ) -> Union[datapoints._ImageType, datapoints._VideoType]:
vfdev's avatar
vfdev committed
85
        fill_ = fill[type(image)]
86

87
88
89
        if transform_id == "Identity":
            return image
        elif transform_id == "ShearX":
90
91
92
93
94
95
            # magnitude should be arctan(magnitude)
            # official autoaug: (1, level, 0, 0, 1, 0)
            # https://github.com/tensorflow/models/blob/dd02069717128186b88afa8d857ce57d17957f03/research/autoaugment/augmentation_transforms.py#L290
            # compared to
            # torchvision:      (1, tan(level), 0, 0, 1, 0)
            # https://github.com/pytorch/vision/blob/0c2373d0bba3499e95776e7936e207d8a1676e65/torchvision/transforms/functional.py#L976
96
            return F.affine(
97
98
99
100
                image,
                angle=0.0,
                translate=[0, 0],
                scale=1.0,
101
                shear=[math.degrees(math.atan(magnitude)), 0.0],
102
                interpolation=interpolation,
103
104
                fill=fill_,
                center=[0, 0],
105
106
            )
        elif transform_id == "ShearY":
107
108
            # magnitude should be arctan(magnitude)
            # See above
109
            return F.affine(
110
111
112
113
                image,
                angle=0.0,
                translate=[0, 0],
                scale=1.0,
114
                shear=[0.0, math.degrees(math.atan(magnitude))],
115
                interpolation=interpolation,
116
117
                fill=fill_,
                center=[0, 0],
118
119
            )
        elif transform_id == "TranslateX":
120
            return F.affine(
121
122
123
124
125
                image,
                angle=0.0,
                translate=[int(magnitude), 0],
                scale=1.0,
                interpolation=interpolation,
126
                shear=[0.0, 0.0],
127
                fill=fill_,
128
129
            )
        elif transform_id == "TranslateY":
130
            return F.affine(
131
132
133
134
135
                image,
                angle=0.0,
                translate=[0, int(magnitude)],
                scale=1.0,
                interpolation=interpolation,
136
                shear=[0.0, 0.0],
137
                fill=fill_,
138
139
            )
        elif transform_id == "Rotate":
140
            return F.rotate(image, angle=magnitude, interpolation=interpolation, fill=fill_)
141
        elif transform_id == "Brightness":
142
            return F.adjust_brightness(image, brightness_factor=1.0 + magnitude)
143
        elif transform_id == "Color":
144
            return F.adjust_saturation(image, saturation_factor=1.0 + magnitude)
145
        elif transform_id == "Contrast":
146
            return F.adjust_contrast(image, contrast_factor=1.0 + magnitude)
147
        elif transform_id == "Sharpness":
148
            return F.adjust_sharpness(image, sharpness_factor=1.0 + magnitude)
149
        elif transform_id == "Posterize":
150
            return F.posterize(image, bits=int(magnitude))
151
        elif transform_id == "Solarize":
Philip Meier's avatar
Philip Meier committed
152
            bound = _FT._max_value(image.dtype) if isinstance(image, torch.Tensor) else 255.0
153
            return F.solarize(image, threshold=bound * magnitude)
154
        elif transform_id == "AutoContrast":
155
            return F.autocontrast(image)
156
        elif transform_id == "Equalize":
157
            return F.equalize(image)
158
        elif transform_id == "Invert":
159
            return F.invert(image)
160
161
        else:
            raise ValueError(f"No transform available for {transform_id}")
162
163
164


class AutoAugment(_AutoAugmentBase):
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    r"""[BETA] AutoAugment data augmentation method based on
    `"AutoAugment: Learning Augmentation Strategies from Data" <https://arxiv.org/pdf/1805.09501.pdf>`_.

    .. betastatus:: AutoAugment transform

    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".

    Args:
        policy (AutoAugmentPolicy): Desired policy enum defined by
            :class:`torchvision.transforms.autoaugment.AutoAugmentPolicy`. Default is ``AutoAugmentPolicy.IMAGENET``.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
    """
183
184
    _v1_transform_cls = _transforms.AutoAugment

185
    _AUGMENTATION_SPACE = {
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        "ShearX": (lambda num_bins, height, width: torch.linspace(0.0, 0.3, num_bins), True),
        "ShearY": (lambda num_bins, height, width: torch.linspace(0.0, 0.3, num_bins), True),
        "TranslateX": (
            lambda num_bins, height, width: torch.linspace(0.0, 150.0 / 331.0 * width, num_bins),
            True,
        ),
        "TranslateY": (
            lambda num_bins, height, width: torch.linspace(0.0, 150.0 / 331.0 * height, num_bins),
            True,
        ),
        "Rotate": (lambda num_bins, height, width: torch.linspace(0.0, 30.0, num_bins), True),
        "Brightness": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Color": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Contrast": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Sharpness": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
201
        "Posterize": (
202
            lambda num_bins, height, width: (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4))).round().int(),
203
204
            False,
        ),
205
        "Solarize": (lambda num_bins, height, width: torch.linspace(1.0, 0.0, num_bins), False),
206
207
208
        "AutoContrast": (lambda num_bins, height, width: None, False),
        "Equalize": (lambda num_bins, height, width: None, False),
        "Invert": (lambda num_bins, height, width: None, False),
209
210
    }

211
212
213
    def __init__(
        self,
        policy: AutoAugmentPolicy = AutoAugmentPolicy.IMAGENET,
214
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
215
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = None,
216
217
    ) -> None:
        super().__init__(interpolation=interpolation, fill=fill)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        self.policy = policy
        self._policies = self._get_policies(policy)

    def _get_policies(
        self, policy: AutoAugmentPolicy
    ) -> List[Tuple[Tuple[str, float, Optional[int]], Tuple[str, float, Optional[int]]]]:
        if policy == AutoAugmentPolicy.IMAGENET:
            return [
                (("Posterize", 0.4, 8), ("Rotate", 0.6, 9)),
                (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
                (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
                (("Posterize", 0.6, 7), ("Posterize", 0.6, 6)),
                (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
                (("Equalize", 0.4, None), ("Rotate", 0.8, 8)),
                (("Solarize", 0.6, 3), ("Equalize", 0.6, None)),
                (("Posterize", 0.8, 5), ("Equalize", 1.0, None)),
                (("Rotate", 0.2, 3), ("Solarize", 0.6, 8)),
                (("Equalize", 0.6, None), ("Posterize", 0.4, 6)),
                (("Rotate", 0.8, 8), ("Color", 0.4, 0)),
                (("Rotate", 0.4, 9), ("Equalize", 0.6, None)),
                (("Equalize", 0.0, None), ("Equalize", 0.8, None)),
                (("Invert", 0.6, None), ("Equalize", 1.0, None)),
                (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
                (("Rotate", 0.8, 8), ("Color", 1.0, 2)),
                (("Color", 0.8, 8), ("Solarize", 0.8, 7)),
                (("Sharpness", 0.4, 7), ("Invert", 0.6, None)),
                (("ShearX", 0.6, 5), ("Equalize", 1.0, None)),
                (("Color", 0.4, 0), ("Equalize", 0.6, None)),
                (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
                (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
                (("Invert", 0.6, None), ("Equalize", 1.0, None)),
                (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
                (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
            ]
        elif policy == AutoAugmentPolicy.CIFAR10:
            return [
                (("Invert", 0.1, None), ("Contrast", 0.2, 6)),
                (("Rotate", 0.7, 2), ("TranslateX", 0.3, 9)),
                (("Sharpness", 0.8, 1), ("Sharpness", 0.9, 3)),
                (("ShearY", 0.5, 8), ("TranslateY", 0.7, 9)),
                (("AutoContrast", 0.5, None), ("Equalize", 0.9, None)),
                (("ShearY", 0.2, 7), ("Posterize", 0.3, 7)),
                (("Color", 0.4, 3), ("Brightness", 0.6, 7)),
                (("Sharpness", 0.3, 9), ("Brightness", 0.7, 9)),
                (("Equalize", 0.6, None), ("Equalize", 0.5, None)),
                (("Contrast", 0.6, 7), ("Sharpness", 0.6, 5)),
                (("Color", 0.7, 7), ("TranslateX", 0.5, 8)),
                (("Equalize", 0.3, None), ("AutoContrast", 0.4, None)),
                (("TranslateY", 0.4, 3), ("Sharpness", 0.2, 6)),
                (("Brightness", 0.9, 6), ("Color", 0.2, 8)),
                (("Solarize", 0.5, 2), ("Invert", 0.0, None)),
                (("Equalize", 0.2, None), ("AutoContrast", 0.6, None)),
                (("Equalize", 0.2, None), ("Equalize", 0.6, None)),
                (("Color", 0.9, 9), ("Equalize", 0.6, None)),
                (("AutoContrast", 0.8, None), ("Solarize", 0.2, 8)),
                (("Brightness", 0.1, 3), ("Color", 0.7, 0)),
                (("Solarize", 0.4, 5), ("AutoContrast", 0.9, None)),
                (("TranslateY", 0.9, 9), ("TranslateY", 0.7, 9)),
                (("AutoContrast", 0.9, None), ("Solarize", 0.8, 3)),
                (("Equalize", 0.8, None), ("Invert", 0.1, None)),
                (("TranslateY", 0.7, 9), ("AutoContrast", 0.9, None)),
            ]
        elif policy == AutoAugmentPolicy.SVHN:
            return [
                (("ShearX", 0.9, 4), ("Invert", 0.2, None)),
                (("ShearY", 0.9, 8), ("Invert", 0.7, None)),
                (("Equalize", 0.6, None), ("Solarize", 0.6, 6)),
                (("Invert", 0.9, None), ("Equalize", 0.6, None)),
                (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
                (("ShearX", 0.9, 4), ("AutoContrast", 0.8, None)),
                (("ShearY", 0.9, 8), ("Invert", 0.4, None)),
                (("ShearY", 0.9, 5), ("Solarize", 0.2, 6)),
                (("Invert", 0.9, None), ("AutoContrast", 0.8, None)),
                (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
                (("ShearX", 0.9, 4), ("Solarize", 0.3, 3)),
                (("ShearY", 0.8, 8), ("Invert", 0.7, None)),
                (("Equalize", 0.9, None), ("TranslateY", 0.6, 6)),
                (("Invert", 0.9, None), ("Equalize", 0.6, None)),
                (("Contrast", 0.3, 3), ("Rotate", 0.8, 4)),
                (("Invert", 0.8, None), ("TranslateY", 0.0, 2)),
                (("ShearY", 0.7, 6), ("Solarize", 0.4, 8)),
                (("Invert", 0.6, None), ("Rotate", 0.8, 4)),
                (("ShearY", 0.3, 7), ("TranslateX", 0.9, 3)),
                (("ShearX", 0.1, 6), ("Invert", 0.6, None)),
                (("Solarize", 0.7, 2), ("TranslateY", 0.6, 7)),
                (("ShearY", 0.8, 4), ("Invert", 0.8, None)),
                (("ShearX", 0.7, 9), ("TranslateY", 0.8, 3)),
                (("ShearY", 0.8, 5), ("AutoContrast", 0.7, None)),
                (("ShearX", 0.7, 2), ("Invert", 0.1, None)),
            ]
        else:
            raise ValueError(f"The provided policy {policy} is not recognized.")

311
    def forward(self, *inputs: Any) -> Any:
312
        flat_inputs_with_spec, image_or_video = self._flatten_and_extract_image_or_video(inputs)
313
        height, width = get_spatial_size(image_or_video)
314

315
        policy = self._policies[int(torch.randint(len(self._policies), ()))]
316

317
        for transform_id, probability, magnitude_idx in policy:
318
319
320
321
322
            if not torch.rand(()) <= probability:
                continue

            magnitudes_fn, signed = self._AUGMENTATION_SPACE[transform_id]

323
            magnitudes = magnitudes_fn(10, height, width)
324
325
326
327
328
329
330
            if magnitudes is not None:
                magnitude = float(magnitudes[magnitude_idx])
                if signed and torch.rand(()) <= 0.5:
                    magnitude *= -1
            else:
                magnitude = 0.0

331
332
            image_or_video = self._apply_image_or_video_transform(
                image_or_video, transform_id, magnitude, interpolation=self.interpolation, fill=self.fill
333
            )
334

335
        return self._unflatten_and_insert_image_or_video(flat_inputs_with_spec, image_or_video)
336
337
338


class RandAugment(_AutoAugmentBase):
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    r"""[BETA] RandAugment data augmentation method based on
    `"RandAugment: Practical automated data augmentation with a reduced search space"
    <https://arxiv.org/abs/1909.13719>`_.

    .. betastatus:: RandAugment transform

    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".

    Args:
        num_ops (int): Number of augmentation transformations to apply sequentially.
        magnitude (int): Magnitude for all the transformations.
        num_magnitude_bins (int): The number of different magnitude values.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
    """

360
    _v1_transform_cls = _transforms.RandAugment
361
    _AUGMENTATION_SPACE = {
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        "Identity": (lambda num_bins, height, width: None, False),
        "ShearX": (lambda num_bins, height, width: torch.linspace(0.0, 0.3, num_bins), True),
        "ShearY": (lambda num_bins, height, width: torch.linspace(0.0, 0.3, num_bins), True),
        "TranslateX": (
            lambda num_bins, height, width: torch.linspace(0.0, 150.0 / 331.0 * width, num_bins),
            True,
        ),
        "TranslateY": (
            lambda num_bins, height, width: torch.linspace(0.0, 150.0 / 331.0 * height, num_bins),
            True,
        ),
        "Rotate": (lambda num_bins, height, width: torch.linspace(0.0, 30.0, num_bins), True),
        "Brightness": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Color": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Contrast": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Sharpness": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
378
        "Posterize": (
379
            lambda num_bins, height, width: (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4))).round().int(),
380
381
            False,
        ),
382
        "Solarize": (lambda num_bins, height, width: torch.linspace(1.0, 0.0, num_bins), False),
383
384
        "AutoContrast": (lambda num_bins, height, width: None, False),
        "Equalize": (lambda num_bins, height, width: None, False),
385
386
    }

387
388
389
390
391
    def __init__(
        self,
        num_ops: int = 2,
        magnitude: int = 9,
        num_magnitude_bins: int = 31,
392
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
393
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = None,
394
395
    ) -> None:
        super().__init__(interpolation=interpolation, fill=fill)
396
397
398
399
        self.num_ops = num_ops
        self.magnitude = magnitude
        self.num_magnitude_bins = num_magnitude_bins

400
    def forward(self, *inputs: Any) -> Any:
401
        flat_inputs_with_spec, image_or_video = self._flatten_and_extract_image_or_video(inputs)
402
        height, width = get_spatial_size(image_or_video)
403
404
405

        for _ in range(self.num_ops):
            transform_id, (magnitudes_fn, signed) = self._get_random_item(self._AUGMENTATION_SPACE)
406
            magnitudes = magnitudes_fn(self.num_magnitude_bins, height, width)
407
            if magnitudes is not None:
408
                magnitude = float(magnitudes[self.magnitude])
409
410
411
412
                if signed and torch.rand(()) <= 0.5:
                    magnitude *= -1
            else:
                magnitude = 0.0
413
414
            image_or_video = self._apply_image_or_video_transform(
                image_or_video, transform_id, magnitude, interpolation=self.interpolation, fill=self.fill
415
            )
416

417
        return self._unflatten_and_insert_image_or_video(flat_inputs_with_spec, image_or_video)
418
419
420


class TrivialAugmentWide(_AutoAugmentBase):
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    r"""[BETA] Dataset-independent data-augmentation with TrivialAugment Wide, as described in
    `"TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation" <https://arxiv.org/abs/2103.10158>`_.

    .. betastatus:: TrivialAugmentWide transform

    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".

    Args:
        num_magnitude_bins (int): The number of different magnitude values.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
    """

439
    _v1_transform_cls = _transforms.TrivialAugmentWide
440
    _AUGMENTATION_SPACE = {
441
442
443
444
445
446
447
448
449
450
        "Identity": (lambda num_bins, height, width: None, False),
        "ShearX": (lambda num_bins, height, width: torch.linspace(0.0, 0.99, num_bins), True),
        "ShearY": (lambda num_bins, height, width: torch.linspace(0.0, 0.99, num_bins), True),
        "TranslateX": (lambda num_bins, height, width: torch.linspace(0.0, 32.0, num_bins), True),
        "TranslateY": (lambda num_bins, height, width: torch.linspace(0.0, 32.0, num_bins), True),
        "Rotate": (lambda num_bins, height, width: torch.linspace(0.0, 135.0, num_bins), True),
        "Brightness": (lambda num_bins, height, width: torch.linspace(0.0, 0.99, num_bins), True),
        "Color": (lambda num_bins, height, width: torch.linspace(0.0, 0.99, num_bins), True),
        "Contrast": (lambda num_bins, height, width: torch.linspace(0.0, 0.99, num_bins), True),
        "Sharpness": (lambda num_bins, height, width: torch.linspace(0.0, 0.99, num_bins), True),
451
        "Posterize": (
452
            lambda num_bins, height, width: (8 - (torch.arange(num_bins) / ((num_bins - 1) / 6))).round().int(),
453
454
            False,
        ),
455
        "Solarize": (lambda num_bins, height, width: torch.linspace(1.0, 0.0, num_bins), False),
456
457
        "AutoContrast": (lambda num_bins, height, width: None, False),
        "Equalize": (lambda num_bins, height, width: None, False),
458
459
    }

460
461
462
    def __init__(
        self,
        num_magnitude_bins: int = 31,
463
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
464
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = None,
465
466
    ):
        super().__init__(interpolation=interpolation, fill=fill)
467
468
        self.num_magnitude_bins = num_magnitude_bins

469
    def forward(self, *inputs: Any) -> Any:
470
        flat_inputs_with_spec, image_or_video = self._flatten_and_extract_image_or_video(inputs)
471
        height, width = get_spatial_size(image_or_video)
472
473
474

        transform_id, (magnitudes_fn, signed) = self._get_random_item(self._AUGMENTATION_SPACE)

475
        magnitudes = magnitudes_fn(self.num_magnitude_bins, height, width)
476
477
478
479
480
481
482
        if magnitudes is not None:
            magnitude = float(magnitudes[int(torch.randint(self.num_magnitude_bins, ()))])
            if signed and torch.rand(()) <= 0.5:
                magnitude *= -1
        else:
            magnitude = 0.0

483
484
        image_or_video = self._apply_image_or_video_transform(
            image_or_video, transform_id, magnitude, interpolation=self.interpolation, fill=self.fill
485
        )
486
        return self._unflatten_and_insert_image_or_video(flat_inputs_with_spec, image_or_video)
487
488
489


class AugMix(_AutoAugmentBase):
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    r"""[BETA] AugMix data augmentation method based on
    `"AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty" <https://arxiv.org/abs/1912.02781>`_.

    .. betastatus:: AugMix transform

    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".

    Args:
        severity (int): The severity of base augmentation operators. Default is ``3``.
        mixture_width (int): The number of augmentation chains. Default is ``3``.
        chain_depth (int): The depth of augmentation chains. A negative value denotes stochastic depth sampled from the interval [1, 3].
            Default is ``-1``.
        alpha (float): The hyperparameter for the probability distributions. Default is ``1.0``.
        all_ops (bool): Use all operations (including brightness, contrast, color and sharpness). Default is ``True``.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
    """

513
514
    _v1_transform_cls = _transforms.AugMix

515
    _PARTIAL_AUGMENTATION_SPACE = {
516
517
518
519
520
        "ShearX": (lambda num_bins, height, width: torch.linspace(0.0, 0.3, num_bins), True),
        "ShearY": (lambda num_bins, height, width: torch.linspace(0.0, 0.3, num_bins), True),
        "TranslateX": (lambda num_bins, height, width: torch.linspace(0.0, width / 3.0, num_bins), True),
        "TranslateY": (lambda num_bins, height, width: torch.linspace(0.0, height / 3.0, num_bins), True),
        "Rotate": (lambda num_bins, height, width: torch.linspace(0.0, 30.0, num_bins), True),
521
        "Posterize": (
522
            lambda num_bins, height, width: (4 - (torch.arange(num_bins) / ((num_bins - 1) / 4))).round().int(),
523
524
            False,
        ),
525
        "Solarize": (lambda num_bins, height, width: torch.linspace(1.0, 0.0, num_bins), False),
526
527
        "AutoContrast": (lambda num_bins, height, width: None, False),
        "Equalize": (lambda num_bins, height, width: None, False),
528
    }
529
    _AUGMENTATION_SPACE: Dict[str, Tuple[Callable[[int, int, int], Optional[torch.Tensor]], bool]] = {
530
        **_PARTIAL_AUGMENTATION_SPACE,
531
532
533
534
        "Brightness": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Color": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Contrast": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
        "Sharpness": (lambda num_bins, height, width: torch.linspace(0.0, 0.9, num_bins), True),
535
536
537
538
539
540
541
542
543
    }

    def __init__(
        self,
        severity: int = 3,
        mixture_width: int = 3,
        chain_depth: int = -1,
        alpha: float = 1.0,
        all_ops: bool = True,
544
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
545
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = None,
546
    ) -> None:
547
        super().__init__(interpolation=interpolation, fill=fill)
548
549
550
551
552
553
554
555
556
557
558
559
560
        self._PARAMETER_MAX = 10
        if not (1 <= severity <= self._PARAMETER_MAX):
            raise ValueError(f"The severity must be between [1, {self._PARAMETER_MAX}]. Got {severity} instead.")
        self.severity = severity
        self.mixture_width = mixture_width
        self.chain_depth = chain_depth
        self.alpha = alpha
        self.all_ops = all_ops

    def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
        # Must be on a separate method so that we can overwrite it in tests.
        return torch._sample_dirichlet(params)

561
    def forward(self, *inputs: Any) -> Any:
562
        flat_inputs_with_spec, orig_image_or_video = self._flatten_and_extract_image_or_video(inputs)
563
        height, width = get_spatial_size(orig_image_or_video)
564

565
566
        if isinstance(orig_image_or_video, torch.Tensor):
            image_or_video = orig_image_or_video
567
        else:  # isinstance(inpt, PIL.Image.Image):
568
            image_or_video = F.pil_to_tensor(orig_image_or_video)
569
570
571

        augmentation_space = self._AUGMENTATION_SPACE if self.all_ops else self._PARTIAL_AUGMENTATION_SPACE

572
        orig_dims = list(image_or_video.shape)
573
        expected_ndim = 5 if isinstance(orig_image_or_video, datapoints.Video) else 4
574
        batch = image_or_video.reshape([1] * max(expected_ndim - image_or_video.ndim, 0) + orig_dims)
575
576
        batch_dims = [batch.size(0)] + [1] * (batch.ndim - 1)

577
578
579
        # Sample the beta weights for combining the original and augmented image or video. To get Beta, we use a
        # Dirichlet with 2 parameters. The 1st column stores the weights of the original and the 2nd the ones of
        # augmented image or video.
580
581
582
583
        m = self._sample_dirichlet(
            torch.tensor([self.alpha, self.alpha], device=batch.device).expand(batch_dims[0], -1)
        )

584
        # Sample the mixing weights and combine them with the ones sampled from Beta for the augmented images or videos.
585
586
        combined_weights = self._sample_dirichlet(
            torch.tensor([self.alpha] * self.mixture_width, device=batch.device).expand(batch_dims[0], -1)
587
        ) * m[:, 1].reshape([batch_dims[0], -1])
588

589
        mix = m[:, 0].reshape(batch_dims) * batch
590
591
592
593
594
595
        for i in range(self.mixture_width):
            aug = batch
            depth = self.chain_depth if self.chain_depth > 0 else int(torch.randint(low=1, high=4, size=(1,)).item())
            for _ in range(depth):
                transform_id, (magnitudes_fn, signed) = self._get_random_item(augmentation_space)

596
                magnitudes = magnitudes_fn(self._PARAMETER_MAX, height, width)
597
598
599
600
601
602
603
                if magnitudes is not None:
                    magnitude = float(magnitudes[int(torch.randint(self.severity, ()))])
                    if signed and torch.rand(()) <= 0.5:
                        magnitude *= -1
                else:
                    magnitude = 0.0

604
                aug = self._apply_image_or_video_transform(
605
                    aug, transform_id, magnitude, interpolation=self.interpolation, fill=self.fill
606
                )
607
            mix.add_(combined_weights[:, i].reshape(batch_dims) * aug)
608
        mix = mix.reshape(orig_dims).to(dtype=image_or_video.dtype)
609

610
        if isinstance(orig_image_or_video, (datapoints.Image, datapoints.Video)):
611
            mix = orig_image_or_video.wrap_like(orig_image_or_video, mix)  # type: ignore[arg-type]
612
        elif isinstance(orig_image_or_video, PIL.Image.Image):
613
            mix = F.to_image_pil(mix)
614

615
        return self._unflatten_and_insert_image_or_video(flat_inputs_with_spec, mix)