_augment.py 14.9 KB
Newer Older
1
2
3
import math
import numbers
import warnings
Thien Tran's avatar
Thien Tran committed
4
from typing import Any, Callable, Dict, List, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
9
from torch.nn.functional import one_hot
from torch.utils._pytree import tree_flatten, tree_unflatten
10
from torchvision import transforms as _transforms, tv_tensors
11
12
from torchvision.transforms.v2 import functional as F

13
from ._transform import _RandomApplyTransform, Transform
Thien Tran's avatar
Thien Tran committed
14
from ._utils import _check_sequence_input, _parse_labels_getter, has_any, is_pure_tensor, query_chw, query_size
15
16
17


class RandomErasing(_RandomApplyTransform):
18
    """Randomly select a rectangle region in the input image or video and erase its pixels.
19
20
21
22
23

    This transform does not support PIL Image.
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896

    Args:
24
25
26
27
        p (float, optional): probability that the random erasing operation will be performed.
        scale (tuple of float, optional): range of proportion of erased area against input image.
        ratio (tuple of float, optional): range of aspect ratio of erased area.
        value (number or tuple of numbers): erasing value. Default is 0. If a single int, it is used to
28
29
30
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
31
        inplace (bool, optional): boolean to make this transform inplace. Default set to False.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    Returns:
        Erased input.

    Example:
        >>> from torchvision.transforms import v2 as transforms
        >>>
        >>> transform = transforms.Compose([
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.PILToTensor(),
        >>>   transforms.ConvertImageDtype(torch.float),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
        >>> ])
    """

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    _v1_transform_cls = _transforms.RandomErasing

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        return dict(
            super()._extract_params_for_v1_transform(),
            value="random" if self.value is None else self.value,
        )

    def __init__(
        self,
        p: float = 0.5,
        scale: Tuple[float, float] = (0.02, 0.33),
        ratio: Tuple[float, float] = (0.3, 3.3),
        value: float = 0.0,
        inplace: bool = False,
    ):
        super().__init__(p=p)
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("Scale and ratio should be of kind (min, max)")
        if scale[0] < 0 or scale[1] > 1:
            raise ValueError("Scale should be between 0 and 1")
        self.scale = scale
        self.ratio = ratio
        if isinstance(value, (int, float)):
            self.value = [float(value)]
        elif isinstance(value, str):
            self.value = None
        elif isinstance(value, (list, tuple)):
            self.value = [float(v) for v in value]
        else:
            self.value = value
        self.inplace = inplace

        self._log_ratio = torch.log(torch.tensor(self.ratio))

Nicolas Hug's avatar
Nicolas Hug committed
91
    def _call_kernel(self, functional: Callable, inpt: Any, *args: Any, **kwargs: Any) -> Any:
92
        if isinstance(inpt, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
93
94
            warnings.warn(
                f"{type(self).__name__}() is currently passing through inputs of type "
95
                f"tv_tensors.{type(inpt).__name__}. This will likely change in the future."
96
            )
Nicolas Hug's avatar
Nicolas Hug committed
97
        return super()._call_kernel(functional, inpt, *args, **kwargs)
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        img_c, img_h, img_w = query_chw(flat_inputs)

        if self.value is not None and not (len(self.value) in (1, img_c)):
            raise ValueError(
                f"If value is a sequence, it should have either a single value or {img_c} (number of inpt channels)"
            )

        area = img_h * img_w

        log_ratio = self._log_ratio
        for _ in range(10):
            erase_area = area * torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(
                    log_ratio[0],  # type: ignore[arg-type]
                    log_ratio[1],  # type: ignore[arg-type]
                )
            ).item()

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
            if not (h < img_h and w < img_w):
                continue

            if self.value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(self.value)[:, None, None]

            i = torch.randint(0, img_h - h + 1, size=(1,)).item()
            j = torch.randint(0, img_w - w + 1, size=(1,)).item()
            break
        else:
            i, j, h, w, v = 0, 0, img_h, img_w, None

        return dict(i=i, j=j, h=h, w=w, v=v)

137
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
138
        if params["v"] is not None:
139
            inpt = self._call_kernel(F.erase, inpt, **params, inplace=self.inplace)
140
141

        return inpt
142
143


Nicolas Hug's avatar
Nicolas Hug committed
144
class _BaseMixUpCutMix(Transform):
145
    def __init__(self, *, alpha: float = 1.0, num_classes: int, labels_getter="default") -> None:
146
        super().__init__()
147
        self.alpha = float(alpha)
148
149
150
151
152
153
154
155
156
157
158
        self._dist = torch.distributions.Beta(torch.tensor([alpha]), torch.tensor([alpha]))

        self.num_classes = num_classes

        self._labels_getter = _parse_labels_getter(labels_getter)

    def forward(self, *inputs):
        inputs = inputs if len(inputs) > 1 else inputs[0]
        flat_inputs, spec = tree_flatten(inputs)
        needs_transform_list = self._needs_transform_list(flat_inputs)

159
        if has_any(flat_inputs, PIL.Image.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask):
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            raise ValueError(f"{type(self).__name__}() does not support PIL images, bounding boxes and masks.")

        labels = self._labels_getter(inputs)
        if not isinstance(labels, torch.Tensor):
            raise ValueError(f"The labels must be a tensor, but got {type(labels)} instead.")
        elif labels.ndim != 1:
            raise ValueError(
                f"labels tensor should be of shape (batch_size,) " f"but got shape {labels.shape} instead."
            )

        params = {
            "labels": labels,
            "batch_size": labels.shape[0],
            **self._get_params(
                [inpt for (inpt, needs_transform) in zip(flat_inputs, needs_transform_list) if needs_transform]
            ),
        }

        # By default, the labels will be False inside needs_transform_list, since they are a torch.Tensor coming
        # after an image or video. However, we need to handle them in _transform, so we make sure to set them to True
        needs_transform_list[next(idx for idx, inpt in enumerate(flat_inputs) if inpt is labels)] = True
        flat_outputs = [
            self._transform(inpt, params) if needs_transform else inpt
            for (inpt, needs_transform) in zip(flat_inputs, needs_transform_list)
        ]

        return tree_unflatten(flat_outputs, spec)

    def _check_image_or_video(self, inpt: torch.Tensor, *, batch_size: int):
189
        expected_num_dims = 5 if isinstance(inpt, tv_tensors.Video) else 4
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        if inpt.ndim != expected_num_dims:
            raise ValueError(
                f"Expected a batched input with {expected_num_dims} dims, but got {inpt.ndim} dimensions instead."
            )
        if inpt.shape[0] != batch_size:
            raise ValueError(
                f"The batch size of the image or video does not match the batch size of the labels: "
                f"{inpt.shape[0]} != {batch_size}."
            )

    def _mixup_label(self, label: torch.Tensor, *, lam: float) -> torch.Tensor:
        label = one_hot(label, num_classes=self.num_classes)
        if not label.dtype.is_floating_point:
            label = label.float()
        return label.roll(1, 0).mul_(1.0 - lam).add_(label.mul(lam))


Nicolas Hug's avatar
Nicolas Hug committed
207
class MixUp(_BaseMixUpCutMix):
208
    """Apply MixUp to the provided batch of images and labels.
209
210
211

    Paper: `mixup: Beyond Empirical Risk Minimization <https://arxiv.org/abs/1710.09412>`_.

212
213
214
    .. note::
        This transform is meant to be used on **batches** of samples, not
        individual images. See
Nicolas Hug's avatar
Nicolas Hug committed
215
        :ref:`sphx_glr_auto_examples_transforms_plot_cutmix_mixup.py` for detailed usage
216
217
218
219
        examples.
        The sample pairing is deterministic and done by matching consecutive
        samples in the batch, so the batch needs to be shuffled (this is an
        implementation detail, not a guaranteed convention.)
220
221
222
223
224
225
226
227

    In the input, the labels are expected to be a tensor of shape ``(batch_size,)``. They will be transformed
    into a tensor of shape ``(batch_size, num_classes)``.

    Args:
        alpha (float, optional): hyperparameter of the Beta distribution used for mixup. Default is 1.
        num_classes (int): number of classes in the batch. Used for one-hot-encoding.
        labels_getter (callable or "default", optional): indicates how to identify the labels in the input.
David Chiu's avatar
David Chiu committed
228
            By default, this will pick the second parameter as the labels if it's a tensor. This covers the most
Nicolas Hug's avatar
Nicolas Hug committed
229
            common scenario where this transform is called as ``MixUp()(imgs_batch, labels_batch)``.
230
231
232
233
234
235
236
237
238
239
240
            It can also be a callable that takes the same input as the transform, and returns the labels.
    """

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        return dict(lam=float(self._dist.sample(())))  # type: ignore[arg-type]

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        lam = params["lam"]

        if inpt is params["labels"]:
            return self._mixup_label(inpt, lam=lam)
241
        elif isinstance(inpt, (tv_tensors.Image, tv_tensors.Video)) or is_pure_tensor(inpt):
242
243
244
245
            self._check_image_or_video(inpt, batch_size=params["batch_size"])

            output = inpt.roll(1, 0).mul_(1.0 - lam).add_(inpt.mul(lam))

246
247
            if isinstance(inpt, (tv_tensors.Image, tv_tensors.Video)):
                output = tv_tensors.wrap(output, like=inpt)
248
249
250
251
252
253

            return output
        else:
            return inpt


Nicolas Hug's avatar
Nicolas Hug committed
254
class CutMix(_BaseMixUpCutMix):
255
    """Apply CutMix to the provided batch of images and labels.
256
257
258
259

    Paper: `CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
    <https://arxiv.org/abs/1905.04899>`_.

260
261
262
    .. note::
        This transform is meant to be used on **batches** of samples, not
        individual images. See
Nicolas Hug's avatar
Nicolas Hug committed
263
        :ref:`sphx_glr_auto_examples_transforms_plot_cutmix_mixup.py` for detailed usage
264
265
266
267
        examples.
        The sample pairing is deterministic and done by matching consecutive
        samples in the batch, so the batch needs to be shuffled (this is an
        implementation detail, not a guaranteed convention.)
268
269
270
271
272
273
274
275

    In the input, the labels are expected to be a tensor of shape ``(batch_size,)``. They will be transformed
    into a tensor of shape ``(batch_size, num_classes)``.

    Args:
        alpha (float, optional): hyperparameter of the Beta distribution used for mixup. Default is 1.
        num_classes (int): number of classes in the batch. Used for one-hot-encoding.
        labels_getter (callable or "default", optional): indicates how to identify the labels in the input.
David Chiu's avatar
David Chiu committed
276
            By default, this will pick the second parameter as the labels if it's a tensor. This covers the most
Nicolas Hug's avatar
Nicolas Hug committed
277
            common scenario where this transform is called as ``CutMix()(imgs_batch, labels_batch)``.
278
279
280
281
282
283
            It can also be a callable that takes the same input as the transform, and returns the labels.
    """

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        lam = float(self._dist.sample(()))  # type: ignore[arg-type]

Philip Meier's avatar
Philip Meier committed
284
        H, W = query_size(flat_inputs)
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

        r_x = torch.randint(W, size=(1,))
        r_y = torch.randint(H, size=(1,))

        r = 0.5 * math.sqrt(1.0 - lam)
        r_w_half = int(r * W)
        r_h_half = int(r * H)

        x1 = int(torch.clamp(r_x - r_w_half, min=0))
        y1 = int(torch.clamp(r_y - r_h_half, min=0))
        x2 = int(torch.clamp(r_x + r_w_half, max=W))
        y2 = int(torch.clamp(r_y + r_h_half, max=H))
        box = (x1, y1, x2, y2)

        lam_adjusted = float(1.0 - (x2 - x1) * (y2 - y1) / (W * H))

        return dict(box=box, lam_adjusted=lam_adjusted)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if inpt is params["labels"]:
            return self._mixup_label(inpt, lam=params["lam_adjusted"])
306
        elif isinstance(inpt, (tv_tensors.Image, tv_tensors.Video)) or is_pure_tensor(inpt):
307
308
309
310
311
312
313
            self._check_image_or_video(inpt, batch_size=params["batch_size"])

            x1, y1, x2, y2 = params["box"]
            rolled = inpt.roll(1, 0)
            output = inpt.clone()
            output[..., y1:y2, x1:x2] = rolled[..., y1:y2, x1:x2]

314
315
            if isinstance(inpt, (tv_tensors.Image, tv_tensors.Video)):
                output = tv_tensors.wrap(output, like=inpt)
316
317
318
319

            return output
        else:
            return inpt
Thien Tran's avatar
Thien Tran committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355


class JPEG(Transform):
    """Apply JPEG compression and decompression to the given images.

    If the input is a :class:`torch.Tensor`, it is expected
    to be of dtype uint8, on CPU, and have [..., 3 or 1, H, W] shape,
    where ... means an arbitrary number of leading dimensions.

    Args:
        quality (sequence or number): JPEG quality, from 1 to 100. Lower means more compression.
            If quality is a sequence like (min, max), it specifies the range of JPEG quality to
            randomly select from (inclusive of both ends).

    Returns:
        image with JPEG compression.
    """

    def __init__(self, quality: Union[int, Sequence[int]]):
        super().__init__()
        if isinstance(quality, int):
            quality = [quality, quality]
        else:
            _check_sequence_input(quality, "quality", req_sizes=(2,))

        if not (1 <= quality[0] <= quality[1] <= 100 and isinstance(quality[0], int) and isinstance(quality[1], int)):
            raise ValueError(f"quality must be an integer from 1 to 100, got {quality =}")

        self.quality = quality

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        quality = torch.randint(self.quality[0], self.quality[1] + 1, ()).item()
        return dict(quality=quality)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return self._call_kernel(F.jpeg, inpt, quality=params["quality"])