PSROIAlign.h 3.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#pragma once

#include "cpu/vision_cpu.h"

#ifdef WITH_CUDA
#include "cuda/vision_cuda.h"
#endif

#include <iostream>

std::tuple<at::Tensor, at::Tensor> PSROIAlign_forward(
    const at::Tensor& input,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio) {
  if (input.type().is_cuda()) {
#ifdef WITH_CUDA
    return PSROIAlign_forward_cuda(
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);
#else
    AT_ERROR("Not compiled with GPU support");
#endif
  }
  return PSROIAlign_forward_cpu(
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
}

at::Tensor PSROIAlign_backward(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& mapping_channel,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const int batch_size,
    const int channels,
    const int height,
    const int width) {
  if (grad.type().is_cuda()) {
#ifdef WITH_CUDA
    return PSROIAlign_backward_cuda(
        grad,
        rois,
        mapping_channel,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio,
        batch_size,
        channels,
        height,
        width);
#else
    AT_ERROR("Not compiled with GPU support");
#endif
  }
  return PSROIAlign_backward_cpu(
      grad,
      rois,
      mapping_channel,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      batch_size,
      channels,
      height,
      width);
}

using namespace at;
using torch::Tensor;
using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class PSROIAlignFunction
    : public torch::autograd::Function<PSROIAlignFunction> {
 public:
  static variable_list forward(
      AutogradContext* ctx,
      Variable input,
      Variable rois,
      const double spatial_scale,
      const int64_t pooled_height,
      const int64_t pooled_width,
      const int64_t sampling_ratio) {
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["input_shape"] = input.sizes();
    auto result = PSROIAlign_forward(
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);
    auto output = std::get<0>(result);
    auto channel_mapping = std::get<1>(result);
    ctx->save_for_backward({rois, channel_mapping});
    ctx->mark_non_differentiable({channel_mapping});
    return {output, channel_mapping};
  }

  static variable_list backward(
      AutogradContext* ctx,
      variable_list grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto channel_mapping = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
    auto grad_in = PSROIAlign_backward(
        grad_output[0],
        rois,
        channel_mapping,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        ctx->saved_data["sampling_ratio"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);
    return {
        grad_in, Variable(), Variable(), Variable(), Variable(), Variable()};
  }
};

std::tuple<Tensor, Tensor> ps_roi_align(
    const Tensor& input,
    const Tensor& rois,
    const double spatial_scale,
    const int64_t pooled_height,
    const int64_t pooled_width,
    const int64_t sampling_ratio) {
  auto result = PSROIAlignFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
  return std::tuple<Tensor, Tensor>(result[0], result[1]);
}