roi_heads.py 32.9 KB
Newer Older
1
import torch
2
import torchvision
3
4

import torch.nn.functional as F
eellison's avatar
eellison committed
5
from torch import nn, Tensor
6
7

from torchvision.ops import boxes as box_ops
eellison's avatar
eellison committed
8

9
10
11
12
from torchvision.ops import roi_align

from . import _utils as det_utils

eellison's avatar
eellison committed
13
14
from torch.jit.annotations import Optional, List, Dict, Tuple

15
16

def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
17
    # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
18
19
20
21
22
23
    """
    Computes the loss for Faster R-CNN.

    Arguments:
        class_logits (Tensor)
        box_regression (Tensor)
24
25
        labels (list[BoxList])
        regression_targets (Tensor)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

    Returns:
        classification_loss (Tensor)
        box_loss (Tensor)
    """

    labels = torch.cat(labels, dim=0)
    regression_targets = torch.cat(regression_targets, dim=0)

    classification_loss = F.cross_entropy(class_logits, labels)

    # get indices that correspond to the regression targets for
    # the corresponding ground truth labels, to be used with
    # advanced indexing
    sampled_pos_inds_subset = torch.nonzero(labels > 0).squeeze(1)
    labels_pos = labels[sampled_pos_inds_subset]
    N, num_classes = class_logits.shape
    box_regression = box_regression.reshape(N, -1, 4)

45
    box_loss = det_utils.smooth_l1_loss(
46
47
        box_regression[sampled_pos_inds_subset, labels_pos],
        regression_targets[sampled_pos_inds_subset],
48
49
        beta=1 / 9,
        size_average=False,
50
51
52
53
54
55
56
    )
    box_loss = box_loss / labels.numel()

    return classification_loss, box_loss


def maskrcnn_inference(x, labels):
57
    # type: (Tensor, List[Tensor]) -> List[Tensor]
58
59
60
61
62
63
64
65
    """
    From the results of the CNN, post process the masks
    by taking the mask corresponding to the class with max
    probability (which are of fixed size and directly output
    by the CNN) and return the masks in the mask field of the BoxList.

    Arguments:
        x (Tensor): the mask logits
66
        labels (list[BoxList]): bounding boxes that are used as
67
68
69
70
71
72
73
74
            reference, one for ech image

    Returns:
        results (list[BoxList]): one BoxList for each image, containing
            the extra field mask
    """
    mask_prob = x.sigmoid()

75
    # select masks corresponding to the predicted classes
76
    num_masks = x.shape[0]
Francisco Massa's avatar
Francisco Massa committed
77
    boxes_per_image = [label.shape[0] for label in labels]
78
79
80
    labels = torch.cat(labels)
    index = torch.arange(num_masks, device=labels.device)
    mask_prob = mask_prob[index, labels][:, None]
81
    mask_prob = mask_prob.split(boxes_per_image, dim=0)
82

83
    return mask_prob
84
85
86


def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
87
    # type: (Tensor, Tensor, Tensor, int) -> Tensor
88
89
90
91
92
93
94
95
96
97
    """
    Given segmentation masks and the bounding boxes corresponding
    to the location of the masks in the image, this function
    crops and resizes the masks in the position defined by the
    boxes. This prepares the masks for them to be fed to the
    loss computation as the targets.
    """
    matched_idxs = matched_idxs.to(boxes)
    rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
    gt_masks = gt_masks[:, None].to(rois)
eellison's avatar
eellison committed
98
    return roi_align(gt_masks, rois, (M, M), 1.)[:, 0]
99
100


101
def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs):
102
    # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor
103
104
105
106
107
108
109
110
111
112
    """
    Arguments:
        proposals (list[BoxList])
        mask_logits (Tensor)
        targets (list[BoxList])

    Return:
        mask_loss (Tensor): scalar tensor containing the loss
    """

113
    discretization_size = mask_logits.shape[-1]
Francisco Massa's avatar
Francisco Massa committed
114
    labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)]
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    mask_targets = [
        project_masks_on_boxes(m, p, i, discretization_size)
        for m, p, i in zip(gt_masks, proposals, mask_matched_idxs)
    ]

    labels = torch.cat(labels, dim=0)
    mask_targets = torch.cat(mask_targets, dim=0)

    # torch.mean (in binary_cross_entropy_with_logits) doesn't
    # accept empty tensors, so handle it separately
    if mask_targets.numel() == 0:
        return mask_logits.sum() * 0

    mask_loss = F.binary_cross_entropy_with_logits(
        mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets
    )
    return mask_loss


def keypoints_to_heatmap(keypoints, rois, heatmap_size):
135
    # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]
    scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
    scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])

    offset_x = offset_x[:, None]
    offset_y = offset_y[:, None]
    scale_x = scale_x[:, None]
    scale_y = scale_y[:, None]

    x = keypoints[..., 0]
    y = keypoints[..., 1]

    x_boundary_inds = x == rois[:, 2][:, None]
    y_boundary_inds = y == rois[:, 3][:, None]

    x = (x - offset_x) * scale_x
    x = x.floor().long()
    y = (y - offset_y) * scale_y
    y = y.floor().long()

157
158
    x[x_boundary_inds] = heatmap_size - 1
    y[y_boundary_inds] = heatmap_size - 1
159
160
161
162
163
164
165
166
167
168
169

    valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
    vis = keypoints[..., 2] > 0
    valid = (valid_loc & vis).long()

    lin_ind = y * heatmap_size + x
    heatmaps = lin_ind * valid

    return heatmaps, valid


170
171
172
173
174
175
176
def _onnx_heatmaps_to_keypoints(maps, maps_i, roi_map_width, roi_map_height,
                                widths_i, heights_i, offset_x_i, offset_y_i):
    num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64)

    width_correction = widths_i / roi_map_width
    height_correction = heights_i / roi_map_height

177
178
    roi_map = F.interpolate(
        maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode='bicubic', align_corners=False)[:, 0]
179
180
181
182
183

    w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64)
    pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)

    x_int = (pos % w)
184
    y_int = ((pos - x_int) // w)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * \
        width_correction.to(dtype=torch.float32)
    y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * \
        height_correction.to(dtype=torch.float32)

    xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
    xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
    xy_preds_i_2 = torch.ones((xy_preds_i_1.shape), dtype=torch.float32)
    xy_preds_i = torch.stack([xy_preds_i_0.to(dtype=torch.float32),
                              xy_preds_i_1.to(dtype=torch.float32),
                              xy_preds_i_2.to(dtype=torch.float32)], 0)

    # TODO: simplify when indexing without rank will be supported by ONNX
    end_scores_i = roi_map.index_select(1, y_int.to(dtype=torch.int64)) \
        .index_select(2, x_int.to(dtype=torch.int64))[:num_keypoints, 0, 0]
    return xy_preds_i, end_scores_i


@torch.jit.script
def _onnx_heatmaps_to_keypoints_loop(maps, rois, widths_ceil, heights_ceil,
                                     widths, heights, offset_x, offset_y, num_keypoints):
    xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device)
    end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device)

    for i in range(int(rois.size(0))):
        xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints(maps, maps[i],
                                                               widths_ceil[i], heights_ceil[i],
                                                               widths[i], heights[i],
                                                               offset_x[i], offset_y[i])
        xy_preds = torch.cat((xy_preds.to(dtype=torch.float32),
                              xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0)
        end_scores = torch.cat((end_scores.to(dtype=torch.float32),
                                end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0)
    return xy_preds, end_scores


222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def heatmaps_to_keypoints(maps, rois):
    """Extract predicted keypoint locations from heatmaps. Output has shape
    (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
    for each keypoint.
    """
    # This function converts a discrete image coordinate in a HEATMAP_SIZE x
    # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
    # consistency with keypoints_to_heatmap_labels by using the conversion from
    # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
    # continuous coordinate.
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]

    widths = rois[:, 2] - rois[:, 0]
    heights = rois[:, 3] - rois[:, 1]
    widths = widths.clamp(min=1)
    heights = heights.clamp(min=1)
    widths_ceil = widths.ceil()
    heights_ceil = heights.ceil()

    num_keypoints = maps.shape[1]
243
244
245
246
247
248
249
250

    if torchvision._is_tracing():
        xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop(maps, rois,
                                                                widths_ceil, heights_ceil, widths, heights,
                                                                offset_x, offset_y,
                                                                torch.scalar_tensor(num_keypoints, dtype=torch.int64))
        return xy_preds.permute(0, 2, 1), end_scores

251
252
253
254
255
256
257
    xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device)
    end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device)
    for i in range(len(rois)):
        roi_map_width = int(widths_ceil[i].item())
        roi_map_height = int(heights_ceil[i].item())
        width_correction = widths[i] / roi_map_width
        height_correction = heights[i] / roi_map_height
258
259
        roi_map = F.interpolate(
            maps[i][:, None], size=(roi_map_height, roi_map_width), mode='bicubic', align_corners=False)[:, 0]
260
261
262
        # roi_map_probs = scores_to_probs(roi_map.copy())
        w = roi_map.shape[2]
        pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
eellison's avatar
eellison committed
263

264
        x_int = pos % w
265
        y_int = (pos - x_int) // w
266
267
268
269
270
271
272
273
274
275
276
277
        # assert (roi_map_probs[k, y_int, x_int] ==
        #         roi_map_probs[k, :, :].max())
        x = (x_int.float() + 0.5) * width_correction
        y = (y_int.float() + 0.5) * height_correction
        xy_preds[i, 0, :] = x + offset_x[i]
        xy_preds[i, 1, :] = y + offset_y[i]
        xy_preds[i, 2, :] = 1
        end_scores[i, :] = roi_map[torch.arange(num_keypoints), y_int, x_int]

    return xy_preds.permute(0, 2, 1), end_scores


278
def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
279
    # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
280
281
282
    N, K, H, W = keypoint_logits.shape
    assert H == W
    discretization_size = H
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    heatmaps = []
    valid = []
    for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs):
        kp = gt_kp_in_image[midx]
        heatmaps_per_image, valid_per_image = keypoints_to_heatmap(
            kp, proposals_per_image, discretization_size
        )
        heatmaps.append(heatmaps_per_image.view(-1))
        valid.append(valid_per_image.view(-1))

    keypoint_targets = torch.cat(heatmaps, dim=0)
    valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
    valid = torch.nonzero(valid).squeeze(1)

    # torch.mean (in binary_cross_entropy_with_logits) does'nt
    # accept empty tensors, so handle it sepaartely
    if keypoint_targets.numel() == 0 or len(valid) == 0:
        return keypoint_logits.sum() * 0

    keypoint_logits = keypoint_logits.view(N * K, H * W)

    keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
    return keypoint_loss


def keypointrcnn_inference(x, boxes):
309
    # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
310
311
312
    kp_probs = []
    kp_scores = []

313
    boxes_per_image = [box.size(0) for box in boxes]
314
315
316
317
318
319
320
321
322
323
    x2 = x.split(boxes_per_image, dim=0)

    for xx, bb in zip(x2, boxes):
        kp_prob, scores = heatmaps_to_keypoints(xx, bb)
        kp_probs.append(kp_prob)
        kp_scores.append(scores)

    return kp_probs, kp_scores


324
def _onnx_expand_boxes(boxes, scale):
325
    # type: (Tensor, float) -> Tensor
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half = w_half.to(dtype=torch.float32) * scale
    h_half = h_half.to(dtype=torch.float32) * scale

    boxes_exp0 = x_c - w_half
    boxes_exp1 = y_c - h_half
    boxes_exp2 = x_c + w_half
    boxes_exp3 = y_c + h_half
    boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1)
    return boxes_exp


342
343
# the next two functions should be merged inside Masker
# but are kept here for the moment while we need them
344
# temporarily for paste_mask_in_image
345
def expand_boxes(boxes, scale):
346
    # type: (Tensor, float) -> Tensor
347
348
    if torchvision._is_tracing():
        return _onnx_expand_boxes(boxes, scale)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    boxes_exp = torch.zeros_like(boxes)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half
    return boxes_exp


eellison's avatar
eellison committed
365
366
367
368
369
370
@torch.jit.unused
def expand_masks_tracing_scale(M, padding):
    # type: (int, int) -> float
    return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32)


371
def expand_masks(mask, padding):
372
    # type: (Tensor, int) -> Tuple[Tensor, float]
373
    M = mask.shape[-1]
eellison's avatar
eellison committed
374
375
    if torch._C._get_tracing_state():  # could not import is_tracing(), not sure why
        scale = expand_masks_tracing_scale(M, padding)
376
377
    else:
        scale = float(M + 2 * padding) / M
378
379
380
381
382
    padded_mask = torch.nn.functional.pad(mask, (padding,) * 4)
    return padded_mask, scale


def paste_mask_in_image(mask, box, im_h, im_w):
383
    # type: (Tensor, Tensor, int, int) -> Tensor
384
385
386
387
388
389
390
391
392
393
    TO_REMOVE = 1
    w = int(box[2] - box[0] + TO_REMOVE)
    h = int(box[3] - box[1] + TO_REMOVE)
    w = max(w, 1)
    h = max(h, 1)

    # Set shape to [batchxCxHxW]
    mask = mask.expand((1, 1, -1, -1))

    # Resize mask
394
    mask = F.interpolate(mask, size=(h, w), mode='bilinear', align_corners=False)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    mask = mask[0][0]

    im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device)
    x_0 = max(box[0], 0)
    x_1 = min(box[2] + 1, im_w)
    y_0 = max(box[1], 0)
    y_1 = min(box[3] + 1, im_h)

    im_mask[y_0:y_1, x_0:x_1] = mask[
        (y_0 - box[1]):(y_1 - box[1]), (x_0 - box[0]):(x_1 - box[0])
    ]
    return im_mask


409
410
411
412
413
414
415
416
417
418
419
420
421
def _onnx_paste_mask_in_image(mask, box, im_h, im_w):
    one = torch.ones(1, dtype=torch.int64)
    zero = torch.zeros(1, dtype=torch.int64)

    w = (box[2] - box[0] + one)
    h = (box[3] - box[1] + one)
    w = torch.max(torch.cat((w, one)))
    h = torch.max(torch.cat((h, one)))

    # Set shape to [batchxCxHxW]
    mask = mask.expand((1, 1, mask.size(0), mask.size(1)))

    # Resize mask
422
    mask = F.interpolate(mask, size=(int(h), int(w)), mode='bilinear', align_corners=False)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    mask = mask[0][0]

    x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero)))
    x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0))))
    y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero)))
    y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0))))

    unpaded_im_mask = mask[(y_0 - box[1]):(y_1 - box[1]),
                           (x_0 - box[0]):(x_1 - box[0])]

    # TODO : replace below with a dynamic padding when support is added in ONNX

    # pad y
    zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1))
    zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1))
    concat_0 = torch.cat((zeros_y0,
                          unpaded_im_mask.to(dtype=torch.float32),
                          zeros_y1), 0)[0:im_h, :]
    # pad x
    zeros_x0 = torch.zeros(concat_0.size(0), x_0)
    zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1)
    im_mask = torch.cat((zeros_x0,
                         concat_0,
                         zeros_x1), 1)[:, :im_w]
    return im_mask


@torch.jit.script
def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w):
    res_append = torch.zeros(0, im_h, im_w)
    for i in range(masks.size(0)):
        mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w)
        mask_res = mask_res.unsqueeze(0)
        res_append = torch.cat((res_append, mask_res))
    return res_append


460
def paste_masks_in_image(masks, boxes, img_shape, padding=1):
461
    # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor
462
    masks, scale = expand_masks(masks, padding=padding)
463
    boxes = expand_boxes(boxes, scale).to(dtype=torch.int64)
464
    im_h, im_w = img_shape
465
466
467
468
469

    if torchvision._is_tracing():
        return _onnx_paste_masks_in_image_loop(masks, boxes,
                                               torch.scalar_tensor(im_h, dtype=torch.int64),
                                               torch.scalar_tensor(im_w, dtype=torch.int64))[:, None]
470
471
472
473
474
    res = [
        paste_mask_in_image(m[0], b, im_h, im_w)
        for m, b in zip(masks, boxes)
    ]
    if len(res) > 0:
eellison's avatar
eellison committed
475
        ret = torch.stack(res, dim=0)[:, None]
476
    else:
eellison's avatar
eellison committed
477
478
        ret = masks.new_empty((0, 1, im_h, im_w))
    return ret
479
480
481


class RoIHeads(torch.nn.Module):
eellison's avatar
eellison committed
482
483
484
485
486
487
    __annotations__ = {
        'box_coder': det_utils.BoxCoder,
        'proposal_matcher': det_utils.Matcher,
        'fg_bg_sampler': det_utils.BalancedPositiveNegativeSampler,
    }

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    def __init__(self,
                 box_roi_pool,
                 box_head,
                 box_predictor,
                 # Faster R-CNN training
                 fg_iou_thresh, bg_iou_thresh,
                 batch_size_per_image, positive_fraction,
                 bbox_reg_weights,
                 # Faster R-CNN inference
                 score_thresh,
                 nms_thresh,
                 detections_per_img,
                 # Mask
                 mask_roi_pool=None,
                 mask_head=None,
                 mask_predictor=None,
                 keypoint_roi_pool=None,
                 keypoint_head=None,
                 keypoint_predictor=None,
                 ):
        super(RoIHeads, self).__init__()

        self.box_similarity = box_ops.box_iou
        # assign ground-truth boxes for each proposal
        self.proposal_matcher = det_utils.Matcher(
            fg_iou_thresh,
            bg_iou_thresh,
            allow_low_quality_matches=False)

        self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(
            batch_size_per_image,
            positive_fraction)

        if bbox_reg_weights is None:
            bbox_reg_weights = (10., 10., 5., 5.)
        self.box_coder = det_utils.BoxCoder(bbox_reg_weights)

        self.box_roi_pool = box_roi_pool
        self.box_head = box_head
        self.box_predictor = box_predictor

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img

        self.mask_roi_pool = mask_roi_pool
        self.mask_head = mask_head
        self.mask_predictor = mask_predictor

        self.keypoint_roi_pool = keypoint_roi_pool
        self.keypoint_head = keypoint_head
        self.keypoint_predictor = keypoint_predictor

    def has_mask(self):
        if self.mask_roi_pool is None:
            return False
        if self.mask_head is None:
            return False
        if self.mask_predictor is None:
            return False
        return True

    def has_keypoint(self):
        if self.keypoint_roi_pool is None:
            return False
        if self.keypoint_head is None:
            return False
        if self.keypoint_predictor is None:
            return False
        return True

    def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
560
        # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
561
562
563
564
        matched_idxs = []
        labels = []
        for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
            if gt_boxes_in_image.numel() == 0:
                # Background image
                device = proposals_in_image.device
                clamped_matched_idxs_in_image = torch.zeros(
                    (proposals_in_image.shape[0],), dtype=torch.int64, device=device
                )
                labels_in_image = torch.zeros(
                    (proposals_in_image.shape[0],), dtype=torch.int64, device=device
                )
            else:
                #  set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
                match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
                matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)

                clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)

                labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
                labels_in_image = labels_in_image.to(dtype=torch.int64)

                # Label background (below the low threshold)
                bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
586
                labels_in_image[bg_inds] = 0
587
588
589

                # Label ignore proposals (between low and high thresholds)
                ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
590
                labels_in_image[ignore_inds] = -1  # -1 is ignored by sampler
591
592
593
594
595
596

            matched_idxs.append(clamped_matched_idxs_in_image)
            labels.append(labels_in_image)
        return matched_idxs, labels

    def subsample(self, labels):
597
        # type: (List[Tensor]) -> List[Tensor]
598
599
600
601
602
603
604
605
606
607
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_inds = []
        for img_idx, (pos_inds_img, neg_inds_img) in enumerate(
            zip(sampled_pos_inds, sampled_neg_inds)
        ):
            img_sampled_inds = torch.nonzero(pos_inds_img | neg_inds_img).squeeze(1)
            sampled_inds.append(img_sampled_inds)
        return sampled_inds

    def add_gt_proposals(self, proposals, gt_boxes):
608
        # type: (List[Tensor], List[Tensor]) -> List[Tensor]
609
610
611
612
613
614
615
616
        proposals = [
            torch.cat((proposal, gt_box))
            for proposal, gt_box in zip(proposals, gt_boxes)
        ]

        return proposals

    def check_targets(self, targets):
617
        # type: (Optional[List[Dict[str, Tensor]]]) -> None
618
        assert targets is not None
Francisco Massa's avatar
Francisco Massa committed
619
620
        assert all(["boxes" in t for t in targets])
        assert all(["labels" in t for t in targets])
eellison's avatar
eellison committed
621
        if self.has_mask():
Francisco Massa's avatar
Francisco Massa committed
622
            assert all(["masks" in t for t in targets])
623

624
625
626
627
628
    def select_training_samples(self,
                                proposals,  # type: List[Tensor]
                                targets     # type: Optional[List[Dict[str, Tensor]]]
                                ):
        # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
629
        self.check_targets(targets)
eellison's avatar
eellison committed
630
        assert targets is not None
631
        dtype = proposals[0].dtype
632
633
        device = proposals[0].device

634
        gt_boxes = [t["boxes"].to(dtype) for t in targets]
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        gt_labels = [t["labels"] for t in targets]

        # append ground-truth bboxes to propos
        proposals = self.add_gt_proposals(proposals, gt_boxes)

        # get matching gt indices for each proposal
        matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
        # sample a fixed proportion of positive-negative proposals
        sampled_inds = self.subsample(labels)
        matched_gt_boxes = []
        num_images = len(proposals)
        for img_id in range(num_images):
            img_sampled_inds = sampled_inds[img_id]
            proposals[img_id] = proposals[img_id][img_sampled_inds]
            labels[img_id] = labels[img_id][img_sampled_inds]
            matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
651
652
653
654
655

            gt_boxes_in_image = gt_boxes[img_id]
            if gt_boxes_in_image.numel() == 0:
                gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
            matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
656
657
658
659

        regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
        return proposals, matched_idxs, labels, regression_targets

660
661
662
663
664
665
666
    def postprocess_detections(self,
                               class_logits,    # type: Tensor
                               box_regression,  # type: Tensor
                               proposals,       # type: List[Tensor]
                               image_shapes     # type: List[Tuple[int, int]]
                               ):
        # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
667
668
669
        device = class_logits.device
        num_classes = class_logits.shape[-1]

670
        boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
671
672
673
674
        pred_boxes = self.box_coder.decode(box_regression, proposals)

        pred_scores = F.softmax(class_logits, -1)

675
676
        pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
        pred_scores_list = pred_scores.split(boxes_per_image, 0)
677
678
679
680

        all_boxes = []
        all_scores = []
        all_labels = []
eellison's avatar
eellison committed
681
        for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes):
682
683
684
685
686
687
688
689
690
691
692
693
694
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            # create labels for each prediction
            labels = torch.arange(num_classes, device=device)
            labels = labels.view(1, -1).expand_as(scores)

            # remove predictions with the background label
            boxes = boxes[:, 1:]
            scores = scores[:, 1:]
            labels = labels[:, 1:]

            # batch everything, by making every class prediction be a separate instance
            boxes = boxes.reshape(-1, 4)
695
696
            scores = scores.reshape(-1)
            labels = labels.reshape(-1)
697
698
699
700
701

            # remove low scoring boxes
            inds = torch.nonzero(scores > self.score_thresh).squeeze(1)
            boxes, scores, labels = boxes[inds], scores[inds], labels[inds]

702
703
704
705
            # remove empty boxes
            keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
            boxes, scores, labels = boxes[keep], scores[keep], labels[keep]

706
707
708
709
710
711
712
713
714
715
716
717
            # non-maximum suppression, independently done per class
            keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
            # keep only topk scoring predictions
            keep = keep[:self.detections_per_img]
            boxes, scores, labels = boxes[keep], scores[keep], labels[keep]

            all_boxes.append(boxes)
            all_scores.append(scores)
            all_labels.append(labels)

        return all_boxes, all_scores, all_labels

718
719
720
721
722
723
724
    def forward(self,
                features,      # type: Dict[str, Tensor]
                proposals,     # type: List[Tensor]
                image_shapes,  # type: List[Tuple[int, int]]
                targets=None   # type: Optional[List[Dict[str, Tensor]]]
                ):
        # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
725
726
727
728
729
730
731
        """
        Arguments:
            features (List[Tensor])
            proposals (List[Tensor[N, 4]])
            image_shapes (List[Tuple[H, W]])
            targets (List[Dict])
        """
732
733
        if targets is not None:
            for t in targets:
eellison's avatar
eellison committed
734
735
736
                # TODO: https://github.com/pytorch/pytorch/issues/26731
                floating_point_types = (torch.float, torch.double, torch.half)
                assert t["boxes"].dtype in floating_point_types, 'target boxes must of float type'
737
                assert t["labels"].dtype == torch.int64, 'target labels must of int64 type'
eellison's avatar
eellison committed
738
                if self.has_keypoint():
739
740
                    assert t["keypoints"].dtype == torch.float32, 'target keypoints must of float type'

741
742
        if self.training:
            proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
eellison's avatar
eellison committed
743
744
745
746
        else:
            labels = None
            regression_targets = None
            matched_idxs = None
747
748
749
750
751

        box_features = self.box_roi_pool(features, proposals, image_shapes)
        box_features = self.box_head(box_features)
        class_logits, box_regression = self.box_predictor(box_features)

eellison's avatar
eellison committed
752
753
        result = torch.jit.annotate(List[Dict[str, torch.Tensor]], [])
        losses = {}
754
        if self.training:
eellison's avatar
eellison committed
755
            assert labels is not None and regression_targets is not None
756
757
            loss_classifier, loss_box_reg = fastrcnn_loss(
                class_logits, box_regression, labels, regression_targets)
eellison's avatar
eellison committed
758
759
760
761
            losses = {
                "loss_classifier": loss_classifier,
                "loss_box_reg": loss_box_reg
            }
762
763
764
765
766
        else:
            boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes)
            num_images = len(boxes)
            for i in range(num_images):
                result.append(
eellison's avatar
eellison committed
767
768
769
770
771
                    {
                        "boxes": boxes[i],
                        "labels": labels[i],
                        "scores": scores[i],
                    }
772
773
                )

eellison's avatar
eellison committed
774
        if self.has_mask():
775
776
            mask_proposals = [p["boxes"] for p in result]
            if self.training:
eellison's avatar
eellison committed
777
                assert matched_idxs is not None
778
779
780
781
782
783
784
785
                # during training, only focus on positive boxes
                num_images = len(proposals)
                mask_proposals = []
                pos_matched_idxs = []
                for img_id in range(num_images):
                    pos = torch.nonzero(labels[img_id] > 0).squeeze(1)
                    mask_proposals.append(proposals[img_id][pos])
                    pos_matched_idxs.append(matched_idxs[img_id][pos])
eellison's avatar
eellison committed
786
787
            else:
                pos_matched_idxs = None
788

eellison's avatar
eellison committed
789
790
791
792
793
794
795
            if self.mask_roi_pool is not None:
                mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes)
                mask_features = self.mask_head(mask_features)
                mask_logits = self.mask_predictor(mask_features)
            else:
                mask_logits = torch.tensor(0)
                raise Exception("Expected mask_roi_pool to be not None")
796
797
798

            loss_mask = {}
            if self.training:
eellison's avatar
eellison committed
799
800
801
802
                assert targets is not None
                assert pos_matched_idxs is not None
                assert mask_logits is not None

803
804
                gt_masks = [t["masks"] for t in targets]
                gt_labels = [t["labels"] for t in targets]
eellison's avatar
eellison committed
805
                rcnn_loss_mask = maskrcnn_loss(
806
                    mask_logits, mask_proposals,
807
                    gt_masks, gt_labels, pos_matched_idxs)
eellison's avatar
eellison committed
808
809
810
                loss_mask = {
                    "loss_mask": rcnn_loss_mask
                }
811
812
813
814
            else:
                labels = [r["labels"] for r in result]
                masks_probs = maskrcnn_inference(mask_logits, labels)
                for mask_prob, r in zip(masks_probs, result):
815
                    r["masks"] = mask_prob
816
817
818

            losses.update(loss_mask)

eellison's avatar
eellison committed
819
820
821
822
        # keep none checks in if conditional so torchscript will conditionally
        # compile each branch
        if self.keypoint_roi_pool is not None and self.keypoint_head is not None \
                and self.keypoint_predictor is not None:
823
824
825
826
827
828
            keypoint_proposals = [p["boxes"] for p in result]
            if self.training:
                # during training, only focus on positive boxes
                num_images = len(proposals)
                keypoint_proposals = []
                pos_matched_idxs = []
eellison's avatar
eellison committed
829
                assert matched_idxs is not None
830
831
832
833
                for img_id in range(num_images):
                    pos = torch.nonzero(labels[img_id] > 0).squeeze(1)
                    keypoint_proposals.append(proposals[img_id][pos])
                    pos_matched_idxs.append(matched_idxs[img_id][pos])
eellison's avatar
eellison committed
834
835
            else:
                pos_matched_idxs = None
836
837
838
839
840
841
842

            keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes)
            keypoint_features = self.keypoint_head(keypoint_features)
            keypoint_logits = self.keypoint_predictor(keypoint_features)

            loss_keypoint = {}
            if self.training:
eellison's avatar
eellison committed
843
844
845
                assert targets is not None
                assert pos_matched_idxs is not None

846
                gt_keypoints = [t["keypoints"] for t in targets]
eellison's avatar
eellison committed
847
                rcnn_loss_keypoint = keypointrcnn_loss(
848
                    keypoint_logits, keypoint_proposals,
849
                    gt_keypoints, pos_matched_idxs)
eellison's avatar
eellison committed
850
851
852
                loss_keypoint = {
                    "loss_keypoint": rcnn_loss_keypoint
                }
853
            else:
eellison's avatar
eellison committed
854
855
856
                assert keypoint_logits is not None
                assert keypoint_proposals is not None

857
858
859
860
861
862
863
864
                keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals)
                for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
                    r["keypoints"] = keypoint_prob
                    r["keypoints_scores"] = kps

            losses.update(loss_keypoint)

        return result, losses