widerface.py 7.93 KB
Newer Older
Josh Bradley's avatar
Josh Bradley committed
1
2
import os
from os.path import abspath, expanduser
3
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
4
5
6
7

import torch
from PIL import Image

8
from .utils import download_and_extract_archive, download_file_from_google_drive, extract_archive, verify_str_arg
Josh Bradley's avatar
Josh Bradley committed
9
10
11
12
13
14
15
16
17
from .vision import VisionDataset


class WIDERFace(VisionDataset):
    """`WIDERFace <http://shuoyang1213.me/WIDERFACE/>`_ Dataset.

    Args:
        root (string): Root directory where images and annotations are downloaded to.
            Expects the following folder structure if download=False:
18
19
20

            .. code::

Josh Bradley's avatar
Josh Bradley committed
21
22
23
24
25
26
27
28
                <root>
                    └── widerface
                        ├── wider_face_split ('wider_face_split.zip' if compressed)
                        ├── WIDER_train ('WIDER_train.zip' if compressed)
                        ├── WIDER_val ('WIDER_val.zip' if compressed)
                        └── WIDER_test ('WIDER_test.zip' if compressed)
        split (string): The dataset split to use. One of {``train``, ``val``, ``test``}.
            Defaults to ``train``.
anthony-cabacungan's avatar
anthony-cabacungan committed
29
        transform (callable, optional): A function/transform that takes in a PIL image
Josh Bradley's avatar
Josh Bradley committed
30
31
32
33
34
35
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
36

Josh Bradley's avatar
Josh Bradley committed
37
38
39
40
    """

    BASE_FOLDER = "widerface"
    FILE_LIST = [
41
42
43
44
        # File ID                             MD5 Hash                            Filename
        ("15hGDLhsx8bLgLcIRD5DhYt5iBxnjNF1M", "3fedf70df600953d25982bcd13d91ba2", "WIDER_train.zip"),
        ("1GUCogbp16PMGa39thoMMeWxp7Rp5oM8Q", "dfa7d7e790efa35df3788964cf0bbaea", "WIDER_val.zip"),
        ("1HIfDbVEWKmsYKJZm4lchTBDLW5N7dY5T", "e5d8f4248ed24c334bbd12f49c29dd40", "WIDER_test.zip"),
Josh Bradley's avatar
Josh Bradley committed
45
46
    ]
    ANNOTATIONS_FILE = (
47
        "http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip",
Josh Bradley's avatar
Josh Bradley committed
48
        "0e3767bcf0e326556d407bf5bff5d27c",
49
        "wider_face_split.zip",
Josh Bradley's avatar
Josh Bradley committed
50
51
52
    )

    def __init__(
53
54
55
56
57
58
        self,
        root: str,
        split: str = "train",
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
Josh Bradley's avatar
Josh Bradley committed
59
    ) -> None:
60
        super().__init__(
61
62
            root=os.path.join(root, self.BASE_FOLDER), transform=transform, target_transform=target_transform
        )
Josh Bradley's avatar
Josh Bradley committed
63
64
65
66
67
68
69
        # check arguments
        self.split = verify_str_arg(split, "split", ("train", "val", "test"))

        if download:
            self.download()

        if not self._check_integrity():
70
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download and prepare it")
Josh Bradley's avatar
Josh Bradley committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

        self.img_info: List[Dict[str, Union[str, Dict[str, torch.Tensor]]]] = []
        if self.split in ("train", "val"):
            self.parse_train_val_annotations_file()
        else:
            self.parse_test_annotations_file()

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is a dict of annotations for all faces in the image.
            target=None for the test split.
        """

        # stay consistent with other datasets and return a PIL Image
        img = Image.open(self.img_info[index]["img_path"])

        if self.transform is not None:
            img = self.transform(img)

        target = None if self.split == "test" else self.img_info[index]["annotations"]
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self) -> int:
        return len(self.img_info)

    def extra_repr(self) -> str:
        lines = ["Split: {split}"]
105
        return "\n".join(lines).format(**self.__dict__)
Josh Bradley's avatar
Josh Bradley committed
106
107
108
109
110

    def parse_train_val_annotations_file(self) -> None:
        filename = "wider_face_train_bbx_gt.txt" if self.split == "train" else "wider_face_val_bbx_gt.txt"
        filepath = os.path.join(self.root, "wider_face_split", filename)

111
        with open(filepath) as f:
Josh Bradley's avatar
Josh Bradley committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            lines = f.readlines()
            file_name_line, num_boxes_line, box_annotation_line = True, False, False
            num_boxes, box_counter = 0, 0
            labels = []
            for line in lines:
                line = line.rstrip()
                if file_name_line:
                    img_path = os.path.join(self.root, "WIDER_" + self.split, "images", line)
                    img_path = abspath(expanduser(img_path))
                    file_name_line = False
                    num_boxes_line = True
                elif num_boxes_line:
                    num_boxes = int(line)
                    num_boxes_line = False
                    box_annotation_line = True
                elif box_annotation_line:
                    box_counter += 1
                    line_split = line.split(" ")
                    line_values = [int(x) for x in line_split]
                    labels.append(line_values)
                    if box_counter >= num_boxes:
                        box_annotation_line = False
                        file_name_line = True
                        labels_tensor = torch.tensor(labels)
136
137
138
139
                        self.img_info.append(
                            {
                                "img_path": img_path,
                                "annotations": {
140
141
142
143
144
145
146
                                    "bbox": labels_tensor[:, 0:4].clone(),  # x, y, width, height
                                    "blur": labels_tensor[:, 4].clone(),
                                    "expression": labels_tensor[:, 5].clone(),
                                    "illumination": labels_tensor[:, 6].clone(),
                                    "occlusion": labels_tensor[:, 7].clone(),
                                    "pose": labels_tensor[:, 8].clone(),
                                    "invalid": labels_tensor[:, 9].clone(),
147
148
149
                                },
                            }
                        )
Josh Bradley's avatar
Josh Bradley committed
150
151
152
                        box_counter = 0
                        labels.clear()
                else:
153
                    raise RuntimeError(f"Error parsing annotation file {filepath}")
Josh Bradley's avatar
Josh Bradley committed
154
155
156
157

    def parse_test_annotations_file(self) -> None:
        filepath = os.path.join(self.root, "wider_face_split", "wider_face_test_filelist.txt")
        filepath = abspath(expanduser(filepath))
158
        with open(filepath) as f:
Josh Bradley's avatar
Josh Bradley committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            lines = f.readlines()
            for line in lines:
                line = line.rstrip()
                img_path = os.path.join(self.root, "WIDER_test", "images", line)
                img_path = abspath(expanduser(img_path))
                self.img_info.append({"img_path": img_path})

    def _check_integrity(self) -> bool:
        # Allow original archive to be deleted (zip). Only need the extracted images
        all_files = self.FILE_LIST.copy()
        all_files.append(self.ANNOTATIONS_FILE)
        for (_, md5, filename) in all_files:
            file, ext = os.path.splitext(filename)
            extracted_dir = os.path.join(self.root, file)
            if not os.path.exists(extracted_dir):
                return False
        return True

    def download(self) -> None:
        if self._check_integrity():
179
            print("Files already downloaded and verified")
Josh Bradley's avatar
Josh Bradley committed
180
181
182
183
184
185
186
187
188
            return

        # download and extract image data
        for (file_id, md5, filename) in self.FILE_LIST:
            download_file_from_google_drive(file_id, self.root, filename, md5)
            filepath = os.path.join(self.root, filename)
            extract_archive(filepath)

        # download and extract annotation files
189
190
191
        download_and_extract_archive(
            url=self.ANNOTATIONS_FILE[0], download_root=self.root, md5=self.ANNOTATIONS_FILE[1]
        )