stanford_cars.py 4.73 KB
Newer Older
1
import pathlib
2
from typing import Any, Callable, Optional, Tuple
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

from PIL import Image

from .utils import download_and_extract_archive, download_url, verify_str_arg
from .vision import VisionDataset


class StanfordCars(VisionDataset):
    """`Stanford Cars <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset

    The Cars dataset contains 16,185 images of 196 classes of cars. The data is
    split into 8,144 training images and 8,041 testing images, where each class
    has been split roughly in a 50-50 split

    .. note::

        This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.

    Args:
        root (string): Root directory of dataset
        split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``.
anthony-cabacungan's avatar
anthony-cabacungan committed
24
        transform (callable, optional): A function/transform that takes in a PIL image
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again."""

    def __init__(
        self,
        root: str,
        split: str = "train",
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ) -> None:

        try:
            import scipy.io as sio
        except ImportError:
            raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy")

        super().__init__(root, transform=transform, target_transform=target_transform)

        self._split = verify_str_arg(split, "split", ("train", "test"))
        self._base_folder = pathlib.Path(root) / "stanford_cars"
        devkit = self._base_folder / "devkit"

        if self._split == "train":
            self._annotations_mat_path = devkit / "cars_train_annos.mat"
            self._images_base_path = self._base_folder / "cars_train"
        else:
            self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat"
            self._images_base_path = self._base_folder / "cars_test"

        if download:
            self.download()

        if not self._check_exists():
            raise RuntimeError("Dataset not found. You can use download=True to download it")

        self._samples = [
            (
                str(self._images_base_path / annotation["fname"]),
                annotation["class"] - 1,  # Original target mapping  starts from 1, hence -1
            )
            for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"]
        ]

        self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist()
        self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)}

    def __len__(self) -> int:
        return len(self._samples)

    def __getitem__(self, idx: int) -> Tuple[Any, Any]:
        """Returns pil_image and class_id for given index"""
        image_path, target = self._samples[idx]
        pil_image = Image.open(image_path).convert("RGB")

        if self.transform is not None:
            pil_image = self.transform(pil_image)
        if self.target_transform is not None:
            target = self.target_transform(target)
        return pil_image, target

    def download(self) -> None:
        if self._check_exists():
            return

        download_and_extract_archive(
            url="https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz",
            download_root=str(self._base_folder),
            md5="c3b158d763b6e2245038c8ad08e45376",
        )
        if self._split == "train":
            download_and_extract_archive(
                url="https://ai.stanford.edu/~jkrause/car196/cars_train.tgz",
                download_root=str(self._base_folder),
                md5="065e5b463ae28d29e77c1b4b166cfe61",
            )
        else:
            download_and_extract_archive(
                url="https://ai.stanford.edu/~jkrause/car196/cars_test.tgz",
                download_root=str(self._base_folder),
                md5="4ce7ebf6a94d07f1952d94dd34c4d501",
            )
            download_url(
                url="https://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat",
                root=str(self._base_folder),
                md5="b0a2b23655a3edd16d84508592a98d10",
            )

    def _check_exists(self) -> bool:
        if not (self._base_folder / "devkit").is_dir():
            return False

        return self._annotations_mat_path.exists() and self._images_base_path.is_dir()