oxford_iiit_pet.py 4.93 KB
Newer Older
Philip Meier's avatar
Philip Meier committed
1
2
3
import os
import os.path
import pathlib
4
from typing import Any, Callable, Optional, Sequence, Tuple, Union
Philip Meier's avatar
Philip Meier committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

from PIL import Image

from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset


class OxfordIIITPet(VisionDataset):
    """`Oxford-IIIT Pet Dataset   <https://www.robots.ox.ac.uk/~vgg/data/pets/>`_.

    Args:
        root (string): Root directory of the dataset.
        split (string, optional): The dataset split, supports ``"trainval"`` (default) or ``"test"``.
        target_types (string, sequence of strings, optional): Types of target to use. Can be ``category`` (default) or
            ``segmentation``. Can also be a list to output a tuple with all specified target types. The types represent:

                - ``category`` (int): Label for one of the 37 pet categories.
                - ``segmentation`` (PIL image): Segmentation trimap of the image.

            If empty, ``None`` will be returned as target.

anthony-cabacungan's avatar
anthony-cabacungan committed
26
        transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
Philip Meier's avatar
Philip Meier committed
27
28
            version. E.g, ``transforms.RandomCrop``.
        target_transform (callable, optional): A function/transform that takes in the target and transforms it.
29
30
        download (bool, optional): If True, downloads the dataset from the internet and puts it into
            ``root/oxford-iiit-pet``. If dataset is already downloaded, it is not downloaded again.
Philip Meier's avatar
Philip Meier committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    """

    _RESOURCES = (
        ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz", "5c4f3ee8e5d25df40f4fd59a7f44e54c"),
        ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz", "95a8c909bbe2e81eed6a22bccdf3f68f"),
    )
    _VALID_TARGET_TYPES = ("category", "segmentation")

    def __init__(
        self,
        root: str,
        split: str = "trainval",
        target_types: Union[Sequence[str], str] = "category",
        transforms: Optional[Callable] = None,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
47
        download: bool = False,
Philip Meier's avatar
Philip Meier committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    ):
        self._split = verify_str_arg(split, "split", ("trainval", "test"))
        if isinstance(target_types, str):
            target_types = [target_types]
        self._target_types = [
            verify_str_arg(target_type, "target_types", self._VALID_TARGET_TYPES) for target_type in target_types
        ]

        super().__init__(root, transforms=transforms, transform=transform, target_transform=target_transform)
        self._base_folder = pathlib.Path(self.root) / "oxford-iiit-pet"
        self._images_folder = self._base_folder / "images"
        self._anns_folder = self._base_folder / "annotations"
        self._segs_folder = self._anns_folder / "trimaps"

        if download:
            self._download()

        if not self._check_exists():
            raise RuntimeError("Dataset not found. You can use download=True to download it")

        image_ids = []
        self._labels = []
        with open(self._anns_folder / f"{self._split}.txt") as file:
            for line in file:
                image_id, label, *_ = line.strip().split()
                image_ids.append(image_id)
                self._labels.append(int(label) - 1)

        self.classes = [
            " ".join(part.title() for part in raw_cls.split("_"))
            for raw_cls, _ in sorted(
                {(image_id.rsplit("_", 1)[0], label) for image_id, label in zip(image_ids, self._labels)},
                key=lambda image_id_and_label: image_id_and_label[1],
            )
        ]
        self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))

        self._images = [self._images_folder / f"{image_id}.jpg" for image_id in image_ids]
        self._segs = [self._segs_folder / f"{image_id}.png" for image_id in image_ids]

    def __len__(self) -> int:
        return len(self._images)

    def __getitem__(self, idx: int) -> Tuple[Any, Any]:
        image = Image.open(self._images[idx]).convert("RGB")

        target: Any = []
        for target_type in self._target_types:
            if target_type == "category":
                target.append(self._labels[idx])
            else:  # target_type == "segmentation"
                target.append(Image.open(self._segs[idx]))

        if not target:
            target = None
        elif len(target) == 1:
            target = target[0]
        else:
            target = tuple(target)

        if self.transforms:
            image, target = self.transforms(image, target)

        return image, target

    def _check_exists(self) -> bool:
        for folder in (self._images_folder, self._anns_folder):
            if not (os.path.exists(folder) and os.path.isdir(folder)):
                return False
        else:
            return True

    def _download(self) -> None:
        if self._check_exists():
            return

        for url, md5 in self._RESOURCES:
            download_and_extract_archive(url, download_root=str(self._base_folder), md5=md5)