imagenette.py 4.32 KB
Newer Older
Philip Meier's avatar
Philip Meier committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from pathlib import Path
from typing import Any, Callable, Optional, Tuple

from PIL import Image

from .folder import find_classes, make_dataset
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset


class Imagenette(VisionDataset):
    """`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset.

    Args:
        root (string): Root directory of the Imagenette dataset.
        split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``.
        size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``.
        download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already
            downloaded archives are not downloaded again.
anthony-cabacungan's avatar
anthony-cabacungan committed
20
        transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
Philip Meier's avatar
Philip Meier committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            version, e.g. ``transforms.RandomCrop``.
        target_transform (callable, optional): A function/transform that takes in the target and transforms it.

     Attributes:
        classes (list): List of the class name tuples.
        class_to_idx (dict): Dict with items (class name, class index).
        wnids (list): List of the WordNet IDs.
        wnid_to_idx (dict): Dict with items (WordNet ID, class index).
    """

    _ARCHIVES = {
        "full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"),
        "320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"),
        "160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"),
    }
    _WNID_TO_CLASS = {
        "n01440764": ("tench", "Tinca tinca"),
        "n02102040": ("English springer", "English springer spaniel"),
        "n02979186": ("cassette player",),
        "n03000684": ("chain saw", "chainsaw"),
        "n03028079": ("church", "church building"),
        "n03394916": ("French horn", "horn"),
        "n03417042": ("garbage truck", "dustcart"),
        "n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"),
        "n03445777": ("golf ball",),
        "n03888257": ("parachute", "chute"),
    }

    def __init__(
        self,
        root: str,
        split: str = "train",
        size: str = "full",
        download=False,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
    ) -> None:
        super().__init__(root, transform=transform, target_transform=target_transform)

        self._split = verify_str_arg(split, "split", ["train", "val"])
        self._size = verify_str_arg(size, "size", ["full", "320px", "160px"])

        self._url, self._md5 = self._ARCHIVES[self._size]
        self._size_root = Path(self.root) / Path(self._url).stem
        self._image_root = str(self._size_root / self._split)

        if download:
            self._download()
        elif not self._check_exists():
            raise RuntimeError("Dataset not found. You can use download=True to download it.")

        self.wnids, self.wnid_to_idx = find_classes(self._image_root)
        self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids]
        self.class_to_idx = {
            class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid]
        }
        self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg")

    def _check_exists(self) -> bool:
        return self._size_root.exists()

    def _download(self):
        if self._check_exists():
            raise RuntimeError(
                f"The directory {self._size_root} already exists. "
                f"If you want to re-download or re-extract the images, delete the directory."
            )

        download_and_extract_archive(self._url, self.root, md5=self._md5)

    def __getitem__(self, idx: int) -> Tuple[Any, Any]:
        path, label = self._samples[idx]
        image = Image.open(path).convert("RGB")

        if self.transform is not None:
            image = self.transform(image)

        if self.target_transform is not None:
            label = self.target_transform(label)

        return image, label

    def __len__(self) -> int:
        return len(self._samples)