"docs/en/_static/wechat_qrcode.jpg" did not exist on "fb39e1e568c49fcd97f9a56cb70a89d6693738c7"
imagenet.py 8.3 KB
Newer Older
Philip Meier's avatar
Philip Meier committed
1
2
import os
import shutil
3
import tempfile
4
from contextlib import contextmanager
5
from typing import Any, Dict, Iterator, List, Optional, Tuple
6

Philip Meier's avatar
Philip Meier committed
7
import torch
8

Philip Meier's avatar
Philip Meier committed
9
from .folder import ImageFolder
10
11
12
from .utils import check_integrity, extract_archive, verify_str_arg

ARCHIVE_META = {
13
14
15
    "train": ("ILSVRC2012_img_train.tar", "1d675b47d978889d74fa0da5fadfb00e"),
    "val": ("ILSVRC2012_img_val.tar", "29b22e2961454d5413ddabcf34fc5622"),
    "devkit": ("ILSVRC2012_devkit_t12.tar.gz", "fa75699e90414af021442c21a62c3abf"),
Philip Meier's avatar
Philip Meier committed
16
17
}

18
19
META_FILE = "meta.bin"

Philip Meier's avatar
Philip Meier committed
20
21
22
23

class ImageNet(ImageFolder):
    """`ImageNet <http://image-net.org/>`_ 2012 Classification Dataset.

puhuk's avatar
puhuk committed
24
25
26
27
28
29
    .. note::
        Before using this class, it is required to download ImageNet 2012 dataset from
        `here <https://image-net.org/challenges/LSVRC/2012/2012-downloads.php>`_ and
        place the files ``ILSVRC2012_devkit_t12.tar.gz`` and ``ILSVRC2012_img_train.tar``
        or ``ILSVRC2012_img_val.tar`` based on ``split`` in the root directory.

Philip Meier's avatar
Philip Meier committed
30
31
32
    Args:
        root (string): Root directory of the ImageNet Dataset.
        split (string, optional): The dataset split, supports ``train``, or ``val``.
anthony-cabacungan's avatar
anthony-cabacungan committed
33
        transform (callable, optional): A function/transform that takes in a PIL image
Philip Meier's avatar
Philip Meier committed
34
35
36
37
38
39
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.

     Attributes:
Philip Meier's avatar
Philip Meier committed
40
        classes (list): List of the class name tuples.
Philip Meier's avatar
Philip Meier committed
41
42
        class_to_idx (dict): Dict with items (class_name, class_index).
        wnids (list): List of the WordNet IDs.
Philip Meier's avatar
Philip Meier committed
43
        wnid_to_idx (dict): Dict with items (wordnet_id, class_index).
Philip Meier's avatar
Philip Meier committed
44
45
46
47
        imgs (list): List of (image path, class_index) tuples
        targets (list): The class_index value for each image in the dataset
    """

48
    def __init__(self, root: str, split: str = "train", **kwargs: Any) -> None:
Philip Meier's avatar
Philip Meier committed
49
        root = self.root = os.path.expanduser(root)
50
        self.split = verify_str_arg(split, "split", ("train", "val"))
Philip Meier's avatar
Philip Meier committed
51

52
53
        self.parse_archives()
        wnid_to_classes = load_meta_file(self.root)[0]
Philip Meier's avatar
Philip Meier committed
54

55
        super().__init__(self.split_folder, **kwargs)
Philip Meier's avatar
Philip Meier committed
56
57
58
        self.root = root

        self.wnids = self.classes
Philip Meier's avatar
Philip Meier committed
59
        self.wnid_to_idx = self.class_to_idx
Philip Meier's avatar
Philip Meier committed
60
        self.classes = [wnid_to_classes[wnid] for wnid in self.wnids]
61
        self.class_to_idx = {cls: idx for idx, clss in enumerate(self.classes) for cls in clss}
Philip Meier's avatar
Philip Meier committed
62

63
    def parse_archives(self) -> None:
64
65
        if not check_integrity(os.path.join(self.root, META_FILE)):
            parse_devkit_archive(self.root)
Philip Meier's avatar
Philip Meier committed
66
67

        if not os.path.isdir(self.split_folder):
68
            if self.split == "train":
69
                parse_train_archive(self.root)
70
            elif self.split == "val":
71
                parse_val_archive(self.root)
Philip Meier's avatar
Philip Meier committed
72
73

    @property
74
    def split_folder(self) -> str:
Philip Meier's avatar
Philip Meier committed
75
76
        return os.path.join(self.root, self.split)

77
    def extra_repr(self) -> str:
78
        return "Split: {split}".format(**self.__dict__)
Philip Meier's avatar
Philip Meier committed
79
80


81
def load_meta_file(root: str, file: Optional[str] = None) -> Tuple[Dict[str, str], List[str]]:
82
83
84
85
86
    if file is None:
        file = META_FILE
    file = os.path.join(root, file)

    if check_integrity(file):
87
        return torch.load(file, weights_only=True)
88
    else:
89
90
91
92
        msg = (
            "The meta file {} is not present in the root directory or is corrupted. "
            "This file is automatically created by the ImageNet dataset."
        )
93
94
        raise RuntimeError(msg.format(file, root))

Philip Meier's avatar
Philip Meier committed
95

96
def _verify_archive(root: str, file: str, md5: str) -> None:
97
    if not check_integrity(os.path.join(root, file), md5):
98
99
100
101
        msg = (
            "The archive {} is not present in the root directory or is corrupted. "
            "You need to download it externally and place it in {}."
        )
102
        raise RuntimeError(msg.format(file, root))
Philip Meier's avatar
Philip Meier committed
103

104

105
def parse_devkit_archive(root: str, file: Optional[str] = None) -> None:
106
107
108
109
110
111
112
113
    """Parse the devkit archive of the ImageNet2012 classification dataset and save
    the meta information in a binary file.

    Args:
        root (str): Root directory containing the devkit archive
        file (str, optional): Name of devkit archive. Defaults to
            'ILSVRC2012_devkit_t12.tar.gz'
    """
Philip Meier's avatar
Philip Meier committed
114
115
    import scipy.io as sio

116
    def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, Tuple[str, ...]]]:
117
        metafile = os.path.join(devkit_root, "data", "meta.mat")
118
        meta = sio.loadmat(metafile, squeeze_me=True)["synsets"]
119
        nums_children = list(zip(*meta))[4]
120
        meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0]
121
        idcs, wnids, classes = list(zip(*meta))[:3]
122
        classes = [tuple(clss.split(", ")) for clss in classes]
123
124
125
126
        idx_to_wnid = {idx: wnid for idx, wnid in zip(idcs, wnids)}
        wnid_to_classes = {wnid: clss for wnid, clss in zip(wnids, classes)}
        return idx_to_wnid, wnid_to_classes

127
    def parse_val_groundtruth_txt(devkit_root: str) -> List[int]:
128
        file = os.path.join(devkit_root, "data", "ILSVRC2012_validation_ground_truth.txt")
129
        with open(file) as txtfh:
130
131
132
133
            val_idcs = txtfh.readlines()
        return [int(val_idx) for val_idx in val_idcs]

    @contextmanager
134
    def get_tmp_dir() -> Iterator[str]:
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        tmp_dir = tempfile.mkdtemp()
        try:
            yield tmp_dir
        finally:
            shutil.rmtree(tmp_dir)

    archive_meta = ARCHIVE_META["devkit"]
    if file is None:
        file = archive_meta[0]
    md5 = archive_meta[1]

    _verify_archive(root, file, md5)

    with get_tmp_dir() as tmp_dir:
        extract_archive(os.path.join(root, file), tmp_dir)

        devkit_root = os.path.join(tmp_dir, "ILSVRC2012_devkit_t12")
        idx_to_wnid, wnid_to_classes = parse_meta_mat(devkit_root)
        val_idcs = parse_val_groundtruth_txt(devkit_root)
        val_wnids = [idx_to_wnid[idx] for idx in val_idcs]

        torch.save((wnid_to_classes, val_wnids), os.path.join(root, META_FILE))


159
def parse_train_archive(root: str, file: Optional[str] = None, folder: str = "train") -> None:
160
161
    """Parse the train images archive of the ImageNet2012 classification dataset and
    prepare it for usage with the ImageNet dataset.
Philip Meier's avatar
Philip Meier committed
162

163
164
165
166
167
168
169
170
171
172
173
    Args:
        root (str): Root directory containing the train images archive
        file (str, optional): Name of train images archive. Defaults to
            'ILSVRC2012_img_train.tar'
        folder (str, optional): Optional name for train images folder. Defaults to
            'train'
    """
    archive_meta = ARCHIVE_META["train"]
    if file is None:
        file = archive_meta[0]
    md5 = archive_meta[1]
Philip Meier's avatar
Philip Meier committed
174

175
    _verify_archive(root, file, md5)
Philip Meier's avatar
Philip Meier committed
176

177
178
    train_root = os.path.join(root, folder)
    extract_archive(os.path.join(root, file), train_root)
Philip Meier's avatar
Philip Meier committed
179

180
181
    archives = [os.path.join(train_root, archive) for archive in os.listdir(train_root)]
    for archive in archives:
182
        extract_archive(archive, os.path.splitext(archive)[0], remove_finished=True)
Philip Meier's avatar
Philip Meier committed
183
184


185
186
187
def parse_val_archive(
    root: str, file: Optional[str] = None, wnids: Optional[List[str]] = None, folder: str = "val"
) -> None:
188
189
    """Parse the validation images archive of the ImageNet2012 classification dataset
    and prepare it for usage with the ImageNet dataset.
Philip Meier's avatar
Philip Meier committed
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    Args:
        root (str): Root directory containing the validation images archive
        file (str, optional): Name of validation images archive. Defaults to
            'ILSVRC2012_img_val.tar'
        wnids (list, optional): List of WordNet IDs of the validation images. If None
            is given, the IDs are loaded from the meta file in the root directory
        folder (str, optional): Optional name for validation images folder. Defaults to
            'val'
    """
    archive_meta = ARCHIVE_META["val"]
    if file is None:
        file = archive_meta[0]
    md5 = archive_meta[1]
    if wnids is None:
        wnids = load_meta_file(root)[1]

    _verify_archive(root, file, md5)
Philip Meier's avatar
Philip Meier committed
208

209
210
    val_root = os.path.join(root, folder)
    extract_archive(os.path.join(root, file), val_root)
Philip Meier's avatar
Philip Meier committed
211

212
    images = sorted(os.path.join(val_root, image) for image in os.listdir(val_root))
213
214
215

    for wnid in set(wnids):
        os.mkdir(os.path.join(val_root, wnid))
Philip Meier's avatar
Philip Meier committed
216

217
218
    for wnid, img_file in zip(wnids, images):
        shutil.move(img_file, os.path.join(val_root, wnid, os.path.basename(img_file)))