video.py 15.3 KB
Newer Older
1
import gc
2
import math
3
import os
4
import re
5
import warnings
6
from fractions import Fraction
7
from typing import Any, Dict, List, Optional, Tuple, Union
8

9
10
import numpy as np
import torch
Francisco Massa's avatar
Francisco Massa committed
11

Kai Zhang's avatar
Kai Zhang committed
12
from ..utils import _log_api_usage_once
13
from . import _video_opt
Francisco Massa's avatar
Francisco Massa committed
14
15


16
17
try:
    import av
18

19
    av.logging.set_level(av.logging.ERROR)
20
21
22
    if not hasattr(av.video.frame.VideoFrame, "pict_type"):
        av = ImportError(
            """\
23
24
25
26
27
Your version of PyAV is too old for the necessary video operations in torchvision.
If you are on Python 3.5, you will have to build from source (the conda-forge
packages are not up-to-date).  See
https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
28
29
"""
        )
30
except ImportError:
31
32
    av = ImportError(
        """\
33
34
35
PyAV is not installed, and is necessary for the video operations in torchvision.
See https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
36
37
"""
    )
38
39


40
def _check_av_available() -> None:
41
42
43
44
    if isinstance(av, Exception):
        raise av


45
def _av_available() -> bool:
46
47
48
    return not isinstance(av, Exception)


49
50
# PyAV has some reference cycles
_CALLED_TIMES = 0
51
_GC_COLLECTION_INTERVAL = 10
52
53


54
55
56
57
58
59
def write_video(
    filename: str,
    video_array: torch.Tensor,
    fps: float,
    video_codec: str = "libx264",
    options: Optional[Dict[str, Any]] = None,
60
61
62
63
    audio_array: Optional[torch.Tensor] = None,
    audio_fps: Optional[float] = None,
    audio_codec: Optional[str] = None,
    audio_options: Optional[Dict[str, Any]] = None,
64
) -> None:
65
66
67
    """
    Writes a 4d tensor in [T, H, W, C] format in a video file

68
69
70
71
72
73
74
75
76
77
78
79
    Args:
        filename (str): path where the video will be saved
        video_array (Tensor[T, H, W, C]): tensor containing the individual frames,
            as a uint8 tensor in [T, H, W, C] format
        fps (Number): video frames per second
        video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc.
        options (Dict): dictionary containing options to be passed into the PyAV video stream
        audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels
            and N is the number of samples
        audio_fps (Number): audio sample rate, typically 44100 or 48000
        audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc.
        audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream
80
    """
Kai Zhang's avatar
Kai Zhang committed
81
82
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(write_video)
83
84
85
    _check_av_available()
    video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy()

86
87
88
89
90
    # PyAV does not support floating point numbers with decimal point
    # and will throw OverflowException in case this is not the case
    if isinstance(fps, float):
        fps = np.round(fps)

91
92
93
94
95
96
97
    with av.open(filename, mode="w") as container:
        stream = container.add_stream(video_codec, rate=fps)
        stream.width = video_array.shape[2]
        stream.height = video_array.shape[1]
        stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24"
        stream.options = options or {}

98
99
        if audio_array is not None:
            audio_format_dtypes = {
100
101
102
103
104
105
106
107
108
109
                "dbl": "<f8",
                "dblp": "<f8",
                "flt": "<f4",
                "fltp": "<f4",
                "s16": "<i2",
                "s16p": "<i2",
                "s32": "<i4",
                "s32p": "<i4",
                "u8": "u1",
                "u8p": "u1",
110
111
112
113
114
115
116
117
118
119
120
            }
            a_stream = container.add_stream(audio_codec, rate=audio_fps)
            a_stream.options = audio_options or {}

            num_channels = audio_array.shape[0]
            audio_layout = "stereo" if num_channels > 1 else "mono"
            audio_sample_fmt = container.streams.audio[0].format.name

            format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt])
            audio_array = torch.as_tensor(audio_array).numpy().astype(format_dtype)

121
            frame = av.AudioFrame.from_ndarray(audio_array, format=audio_sample_fmt, layout=audio_layout)
122
123
124
125
126
127
128
129
130

            frame.sample_rate = audio_fps

            for packet in a_stream.encode(frame):
                container.mux(packet)

            for packet in a_stream.encode():
                container.mux(packet)

131
132
133
134
135
136
137
138
        for img in video_array:
            frame = av.VideoFrame.from_ndarray(img, format="rgb24")
            frame.pict_type = "NONE"
            for packet in stream.encode(frame):
                container.mux(packet)

        # Flush stream
        for packet in stream.encode():
139
140
141
            container.mux(packet)


142
def _read_from_stream(
143
144
145
146
147
148
149
    container: "av.container.Container",
    start_offset: float,
    end_offset: float,
    pts_unit: str,
    stream: "av.stream.Stream",
    stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]],
) -> List["av.frame.Frame"]:
150
151
152
153
154
    global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
    _CALLED_TIMES += 1
    if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
        gc.collect()

155
    if pts_unit == "sec":
156
157
        # TODO: we should change all of this from ground up to simply take
        # sec and convert to MS in C++
158
159
160
161
        start_offset = int(math.floor(start_offset * (1 / stream.time_base)))
        if end_offset != float("inf"):
            end_offset = int(math.ceil(end_offset * (1 / stream.time_base)))
    else:
162
        warnings.warn("The pts_unit 'pts' gives wrong results. Please use pts_unit 'sec'.")
163

164
    frames = {}
165
    should_buffer = True
166
167
    max_buffer_size = 5
    if stream.type == "video":
168
        # DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt)
169
170
        # so need to buffer some extra frames to sort everything
        # properly
171
172
173
174
175
176
177
        extradata = stream.codec_context.extradata
        # overly complicated way of finding if `divx_packed` is set, following
        # https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263
        if extradata and b"DivX" in extradata:
            # can't use regex directly because of some weird characters sometimes...
            pos = extradata.find(b"DivX")
            d = extradata[pos:]
178
            o = re.search(rb"DivX(\d+)Build(\d+)(\w)", d)
179
            if o is None:
180
                o = re.search(rb"DivX(\d+)b(\d+)(\w)", d)
181
182
            if o is not None:
                should_buffer = o.group(3) == b"p"
183
    seek_offset = start_offset
184
185
    # some files don't seek to the right location, so better be safe here
    seek_offset = max(seek_offset - 1, 0)
186
187
188
189
    if should_buffer:
        # FIXME this is kind of a hack, but we will jump to the previous keyframe
        # so this will be safe
        seek_offset = max(seek_offset - max_buffer_size, 0)
190
191
192
193
    try:
        # TODO check if stream needs to always be the video stream here or not
        container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    except av.AVError:
194
195
        # TODO add some warnings in this case
        # print("Corrupted file?", container.name)
196
        return []
197
    buffer_count = 0
198
    try:
199
        for _idx, frame in enumerate(container.decode(**stream_name)):
200
201
202
203
204
205
206
207
208
            frames[frame.pts] = frame
            if frame.pts >= end_offset:
                if should_buffer and buffer_count < max_buffer_size:
                    buffer_count += 1
                    continue
                break
    except av.AVError:
        # TODO add a warning
        pass
209
    # ensure that the results are sorted wrt the pts
210
    result = [frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset]
211
    if len(frames) > 0 and start_offset > 0 and start_offset not in frames:
212
213
214
        # if there is no frame that exactly matches the pts of start_offset
        # add the last frame smaller than start_offset, to guarantee that
        # we will have all the necessary data. This is most useful for audio
215
216
217
218
        preceding_frames = [i for i in frames if i < start_offset]
        if len(preceding_frames) > 0:
            first_frame_pts = max(preceding_frames)
            result.insert(0, frames[first_frame_pts])
219
    return result
220
221


222
223
224
def _align_audio_frames(
    aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float
) -> torch.Tensor:
225
226
227
228
229
230
231
232
233
234
235
236
    start, end = audio_frames[0].pts, audio_frames[-1].pts
    total_aframes = aframes.shape[1]
    step_per_aframe = (end - start + 1) / total_aframes
    s_idx = 0
    e_idx = total_aframes
    if start < ref_start:
        s_idx = int((ref_start - start) / step_per_aframe)
    if end > ref_end:
        e_idx = int((ref_end - end) / step_per_aframe)
    return aframes[:, s_idx:e_idx]


237
def read_video(
238
239
240
241
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
242
    output_format: str = "THWC",
243
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
244
245
246
247
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

248
249
250
251
252
253
254
255
    Args:
        filename (str): path to the video file
        start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The start presentation time of the video
        end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The end presentation time
        pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
            either 'pts' or 'sec'. Defaults to 'pts'.
256
        output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
257
258

    Returns:
259
        vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
260
261
        aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
262
    """
Kai Zhang's avatar
Kai Zhang committed
263
264
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(read_video)
Francisco Massa's avatar
Francisco Massa committed
265

266
267
268
269
    output_format = output_format.upper()
    if output_format not in ("THWC", "TCHW"):
        raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")

Francisco Massa's avatar
Francisco Massa committed
270
    from torchvision import get_video_backend
271

272
    if not os.path.exists(filename):
273
        raise RuntimeError(f"File not found: {filename}")
274

Francisco Massa's avatar
Francisco Massa committed
275
    if get_video_backend() != "pyav":
276
        vframes, aframes, info = _video_opt._read_video(filename, start_pts, end_pts, pts_unit)
277
    else:
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        _check_av_available()

        if end_pts is None:
            end_pts = float("inf")

        if end_pts < start_pts:
            raise ValueError(
                f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}"
            )

        info = {}
        video_frames = []
        audio_frames = []
        audio_timebase = _video_opt.default_timebase

        try:
            with av.open(filename, metadata_errors="ignore") as container:
                if container.streams.audio:
                    audio_timebase = container.streams.audio[0].time_base
                if container.streams.video:
                    video_frames = _read_from_stream(
                        container,
                        start_pts,
                        end_pts,
                        pts_unit,
                        container.streams.video[0],
                        {"video": 0},
                    )
                    video_fps = container.streams.video[0].average_rate
                    # guard against potentially corrupted files
                    if video_fps is not None:
                        info["video_fps"] = float(video_fps)

                if container.streams.audio:
                    audio_frames = _read_from_stream(
                        container,
                        start_pts,
                        end_pts,
                        pts_unit,
                        container.streams.audio[0],
                        {"audio": 0},
                    )
                    info["audio_fps"] = container.streams.audio[0].rate

        except av.AVError:
            # TODO raise a warning?
            pass

        vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames]
        aframes_list = [frame.to_ndarray() for frame in audio_frames]

        if vframes_list:
            vframes = torch.as_tensor(np.stack(vframes_list))
        else:
            vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)

        if aframes_list:
            aframes = np.concatenate(aframes_list, 1)
            aframes = torch.as_tensor(aframes)
            if pts_unit == "sec":
                start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
                if end_pts != float("inf"):
                    end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
            aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
        else:
            aframes = torch.empty((1, 0), dtype=torch.float32)
344

345
346
347
348
    if output_format == "TCHW":
        # [T,H,W,C] --> [T,C,H,W]
        vframes = vframes.permute(0, 3, 1, 2)

349
350
351
    return vframes, aframes, info


352
def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool:
353
354
355
356
357
358
359
360
    extradata = container.streams[0].codec_context.extradata
    if extradata is None:
        return False
    if b"Lavc" in extradata:
        return True
    return False


361
def _decode_video_timestamps(container: "av.container.Container") -> List[int]:
362
363
364
365
366
367
368
    if _can_read_timestamps_from_packets(container):
        # fast path
        return [x.pts for x in container.demux(video=0) if x.pts is not None]
    else:
        return [x.pts for x in container.decode(video=0) if x.pts is not None]


369
def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]:
370
371
372
373
374
    """
    List the video frames timestamps.

    Note that the function decodes the whole video frame-by-frame.

375
376
377
378
379
380
381
382
383
    Args:
        filename (str): path to the video file
        pts_unit (str, optional): unit in which timestamp values will be returned
            either 'pts' or 'sec'. Defaults to 'pts'.

    Returns:
        pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'):
            presentation timestamps for each one of the frames in the video.
        video_fps (float, optional): the frame rate for the video
384
385

    """
Kai Zhang's avatar
Kai Zhang committed
386
387
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(read_video_timestamps)
Francisco Massa's avatar
Francisco Massa committed
388
    from torchvision import get_video_backend
389

Francisco Massa's avatar
Francisco Massa committed
390
391
392
    if get_video_backend() != "pyav":
        return _video_opt._read_video_timestamps(filename, pts_unit)

393
    _check_av_available()
394

395
    video_fps = None
396
    pts = []
397
398

    try:
399
400
401
402
403
404
405
406
407
        with av.open(filename, metadata_errors="ignore") as container:
            if container.streams.video:
                video_stream = container.streams.video[0]
                video_time_base = video_stream.time_base
                try:
                    pts = _decode_video_timestamps(container)
                except av.AVError:
                    warnings.warn(f"Failed decoding frames for file {filename}")
                video_fps = float(video_stream.average_rate)
408
409
410
    except av.AVError as e:
        msg = f"Failed to open container for {filename}; Caught error: {e}"
        warnings.warn(msg, RuntimeWarning)
411

412
    pts.sort()
413

414
    if pts_unit == "sec":
415
416
417
        pts = [x * video_time_base for x in pts]

    return pts, video_fps