"docs/git@developer.sourcefind.cn:Fzc7075/nunchaku.git" did not exist on "dd1371c3953bf41c452eb7e96d651736ab217c5f"
common_utils.py 15.6 KB
Newer Older
1
2
3
4
import os
import shutil
import tempfile
import contextlib
eellison's avatar
eellison committed
5
6
7
import unittest
import argparse
import sys
8
import io
eellison's avatar
eellison committed
9
import torch
10
import warnings
eellison's avatar
eellison committed
11
import __main__
12
import random
13

14
from numbers import Number
Philip Meier's avatar
Philip Meier committed
15
from torch._six import string_classes
16
17
from collections import OrderedDict

18
19
20
import numpy as np
from PIL import Image

21
22
23
24
25
26
27
28
29
30
31

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
32
33


34
35
36
37
38
39
def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)


eellison's avatar
eellison committed
40
ACCEPT = os.getenv('EXPECTTEST_ACCEPT')
41
42
43
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# TEST_WITH_SLOW = True  # TODO: Delete this line once there is a PYTORCH_TEST_WITH_SLOW aware CI job

eellison's avatar
eellison committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
if not ACCEPT:
    ACCEPT = args.accept
for i, arg in enumerate(sys.argv):
    if arg == '--accept':
        del sys.argv[i]
        break


class MapNestedTensorObjectImpl(object):
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


85
86
87
88
89
90
91
92
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


eellison's avatar
eellison committed
93
94
95
# adapted from TestCase in torch/test/common_utils to accept non-string
# inputs and set maximum binary size
class TestCase(unittest.TestCase):
96
97
    precision = 1e-5

98
    def _get_expected_file(self, subname=None, strip_suffix=None):
99
        def remove_prefix_suffix(text, prefix, suffix):
eellison's avatar
eellison committed
100
            if text.startswith(prefix):
101
102
103
                text = text[len(prefix):]
            if suffix is not None and text.endswith(suffix):
                text = text[:len(text) - len(suffix)]
eellison's avatar
eellison committed
104
105
106
107
108
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.
        module_id = self.__class__.__module__
109
        munged_id = remove_prefix_suffix(self.id(), module_id + ".", strip_suffix)
eellison's avatar
eellison committed
110
111
112
113
114
115
116
117
118
        test_file = os.path.realpath(sys.modules[module_id].__file__)
        expected_file = os.path.join(os.path.dirname(test_file),
                                     "expect",
                                     munged_id)

        if subname:
            expected_file += "_" + subname
        expected_file += "_expect.pkl"

119
120
        if not ACCEPT and not os.path.exists(expected_file):
            raise RuntimeError(
121
122
                ("No expect file exists for {}; to accept the current output, run:\n"
                 "python {} {} --accept").format(os.path.basename(expected_file), __main__.__file__, munged_id))
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

        return expected_file

    def assertExpected(self, output, subname=None, prec=None, strip_suffix=None):
        r"""
        Test that a python value matches the recorded contents of a file
        derived from the name of this test and subname.  The value must be
        pickable with `torch.save`. This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.

        strip_suffix allows different tests that expect similar numerics, e.g.
        "test_xyz_cuda" and "test_xyz_cpu", to use the same pickled data.
        test_xyz_cuda would pass strip_suffix="_cuda", test_xyz_cpu would pass
        strip_suffix="_cpu", and they would both use a data file name based on
        "test_xyz".
        """
        expected_file = self._get_expected_file(subname, strip_suffix)

        if ACCEPT:
147
148
            filename = {os.path.basename(expected_file)}
            print("Accepting updated output for {}:\n\n{}".format(filename, output))
eellison's avatar
eellison committed
149
150
151
            torch.save(output, expected_file)
            MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
            binary_size = os.path.getsize(expected_file)
152
153
            if binary_size > MAX_PICKLE_SIZE:
                raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
eellison's avatar
eellison committed
154
        else:
155
            expected = torch.load(expected_file)
156
            self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
157

158
159
160
161
162
163
164
165
166
    def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
        """
        This is copied from pytorch/test/common_utils.py's TestCase.assertEqual
        """
        if isinstance(prec, str) and message == '':
            message = prec
            prec = None
        if prec is None:
            prec = self.precision
eellison's avatar
eellison committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
        if isinstance(x, torch.Tensor) and isinstance(y, Number):
            self.assertEqual(x.item(), y, prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(y, torch.Tensor) and isinstance(x, Number):
            self.assertEqual(x, y.item(), prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
            def assertTensorsEqual(a, b):
                super(TestCase, self).assertEqual(a.size(), b.size(), message)
                if a.numel() > 0:
                    if (a.device.type == 'cpu' and (a.dtype == torch.float16 or a.dtype == torch.bfloat16)):
                        # CPU half and bfloat16 tensors don't have the methods we need below
                        a = a.to(torch.float32)
                    b = b.to(a)
eellison's avatar
eellison committed
182

183
184
185
186
187
188
189
190
                    if (a.dtype == torch.bool) != (b.dtype == torch.bool):
                        raise TypeError("Was expecting both tensors to be bool type.")
                    else:
                        if a.dtype == torch.bool and b.dtype == torch.bool:
                            # we want to respect precision but as bool doesn't support substraction,
                            # boolean tensor has to be converted to int
                            a = a.to(torch.int)
                            b = b.to(torch.int)
eellison's avatar
eellison committed
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                        diff = a - b
                        if a.is_floating_point():
                            # check that NaNs are in the same locations
                            nan_mask = torch.isnan(a)
                            self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
                            diff[nan_mask] = 0
                            # inf check if allow_inf=True
                            if allow_inf:
                                inf_mask = torch.isinf(a)
                                inf_sign = inf_mask.sign()
                                self.assertTrue(torch.equal(inf_sign, torch.isinf(b).sign()), message)
                                diff[inf_mask] = 0
                        # TODO: implement abs on CharTensor (int8)
                        if diff.is_signed() and diff.dtype != torch.int8:
                            diff = diff.abs()
                        max_err = diff.max()
                        tolerance = prec + prec * abs(a.max())
                        self.assertLessEqual(max_err, tolerance, message)
            super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
            super(TestCase, self).assertEqual(x.is_quantized, y.is_quantized, message)
            if x.is_sparse:
                x = self.safeCoalesce(x)
                y = self.safeCoalesce(y)
                assertTensorsEqual(x._indices(), y._indices())
                assertTensorsEqual(x._values(), y._values())
            elif x.is_quantized and y.is_quantized:
                self.assertEqual(x.qscheme(), y.qscheme(), prec=prec,
                                 message=message, allow_inf=allow_inf)
                if x.qscheme() == torch.per_tensor_affine:
                    self.assertEqual(x.q_scale(), y.q_scale(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_zero_point(), y.q_zero_point(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                elif x.qscheme() == torch.per_channel_affine:
                    self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
                                     prec=prec, message=message)
                self.assertEqual(x.dtype, y.dtype)
                self.assertEqual(x.int_repr().to(torch.int32),
                                 y.int_repr().to(torch.int32), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                assertTensorsEqual(x, y)
        elif isinstance(x, string_classes) and isinstance(y, string_classes):
            super(TestCase, self).assertEqual(x, y, message)
        elif type(x) == set and type(y) == set:
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, dict) and isinstance(y, dict):
            if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
                self.assertEqual(x.items(), y.items(), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                self.assertEqual(set(x.keys()), set(y.keys()), prec=prec,
                                 message=message, allow_inf=allow_inf)
                key_list = list(x.keys())
                self.assertEqual([x[k] for k in key_list],
                                 [y[k] for k in key_list],
                                 prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif is_iterable(x) and is_iterable(y):
            super(TestCase, self).assertEqual(len(x), len(y), message)
            for x_, y_ in zip(x, y):
                self.assertEqual(x_, y_, prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif isinstance(x, bool) and isinstance(y, bool):
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, Number) and isinstance(y, Number):
Philip Meier's avatar
Philip Meier committed
264
            inf = float("inf")
265
266
267
268
269
270
271
272
273
            if abs(x) == inf or abs(y) == inf:
                if allow_inf:
                    super(TestCase, self).assertEqual(x, y, message)
                else:
                    self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
                return
            super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
        else:
            super(TestCase, self).assertEqual(x, y, message)
eellison's avatar
eellison committed
274

275
    def check_jit_scriptable(self, nn_module, args, unwrapper=None, skip=False):
276
277
278
279
280
281
        """
        Check that a nn.Module's results in TorchScript match eager and that it
        can be exported
        """
        if not TEST_WITH_SLOW or skip:
            # TorchScript is not enabled, skip these tests
282
283
284
285
286
287
288
289
            msg = "The check_jit_scriptable test for {} was skipped. " \
                  "This test checks if the module's results in TorchScript " \
                  "match eager and that it can be exported. To run these " \
                  "tests make sure you set the environment variable " \
                  "PYTORCH_TEST_WITH_SLOW=1 and that the test is not " \
                  "manually skipped.".format(nn_module.__class__.__name__)
            warnings.warn(msg, RuntimeWarning)
            return None
eellison's avatar
eellison committed
290

291
292
293
294
295
296
297
298
299
300
        sm = torch.jit.script(nn_module)

        with freeze_rng_state():
            eager_out = nn_module(*args)

        with freeze_rng_state():
            script_out = sm(*args)
            if unwrapper:
                script_out = unwrapper(script_out)

301
        self.assertEqual(eager_out, script_out, prec=1e-4)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        self.assertExportImportModule(sm, args)

        return sm

    def getExportImportCopy(self, m):
        """
        Save and load a TorchScript model
        """
        buffer = io.BytesIO()
        torch.jit.save(m, buffer)
        buffer.seek(0)
        imported = torch.jit.load(buffer)
        return imported

    def assertExportImportModule(self, m, args):
        """
        Check that the results of a model are the same after saving and loading
        """
        m_import = self.getExportImportCopy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        self.assertEqual(results, results_from_imported)


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)
337
338
339
340
341


class TransformsTester(unittest.TestCase):

    def _create_data(self, height=3, width=3, channels=3, device="cpu"):
342
        tensor = torch.randint(0, 256, (channels, height, width), dtype=torch.uint8, device=device)
343
344
345
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().cpu().numpy())
        return tensor, pil_img

346
347
    def _create_data_batch(self, height=3, width=3, channels=3, num_samples=4, device="cpu"):
        batch_tensor = torch.randint(
348
            0, 256,
349
350
351
352
353
354
            (num_samples, channels, height, width),
            dtype=torch.uint8,
            device=device
        )
        return batch_tensor

355
356
357
358
359
360
361
362
363
    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
        if msg is None:
            msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
        self.assertTrue(tensor.cpu().equal(pil_tensor), msg)

364
365
366
367
368
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None, agg_method="mean"):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)
vfdev's avatar
vfdev committed
369
370
        # error value can be mean absolute error, max abs error
        err = getattr(torch, agg_method)(torch.abs(tensor - pil_tensor)).item()
371
372
373
374
        self.assertTrue(
            err < tol,
            msg="{}: err={}, tol={}: \n{}\nvs\n{}".format(msg, err, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )
375
376
377
378
379
380
381
382
383
384
385
386
387


def cycle_over(objs):
    for idx, obj in enumerate(objs):
        yield obj, objs[:idx] + objs[idx + 1:]


def int_dtypes():
    return torch.testing.integral_types()


def float_dtypes():
    return torch.testing.floating_types()