DeformConv_cpu.cpp 30.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*!
 ******************* BEGIN Caffe Copyright Notice and Disclaimer
 *****************
 *
 * COPYRIGHT
 *
 * All contributions by the University of California:
 * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
 * All rights reserved.
 *
 * All other contributions:
 * Copyright (c) 2014-2017, the respective contributors
 * All rights reserved.
 *
 * Caffe uses a shared copyright model: each contributor holds copyright over
 * their contributions to Caffe. The project versioning records all such
 * contribution and copyright details. If a contributor wants to further mark
 * their specific copyright on a particular contribution, they should indicate
 * their copyright solely in the commit message of the change when it is
 * committed.
 *
 * LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * CONTRIBUTION AGREEMENT
 *
 * By contributing to the BVLC/caffe repository through pull-request, comment,
 * or otherwise, the contributor releases their content to the
 * license and copyright terms herein.
 *
 ***************** END Caffe Copyright Notice and Disclaimer
 *********************
 *
 * Copyright (c) 2018 Microsoft
 * Licensed under The MIT License [see LICENSE for details]
 * \file modulated_deformable_im2col.cuh
 * \brief Function definitions of converting an image to
 * column matrix based on kernel, padding, dilation, and offset.
 * These functions are mainly used in deformable convolution operators.
 * \ref: https://arxiv.org/abs/1703.06211
 * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
 */

// modified from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu

// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp

#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <TH/TH.h>

#include <cmath>
#include <iostream>
#include <tuple>

using namespace at;

const int kMaxParallelImgs = 32;

template <typename scalar_t>
static scalar_t bilinear_interpolate(
    const scalar_t* in,
    const int height,
    const int width,
    scalar_t h,
    scalar_t w) {
  if (h <= -1 || height <= h || w <= -1 || width <= w) {
    return 0;
  }

  int h_low = floor(h);
  int w_low = floor(w);
  int h_high = h_low + 1;
  int w_high = w_low + 1;

  scalar_t lh = h - h_low;
  scalar_t lw = w - w_low;
  scalar_t hh = 1 - lh, hw = 1 - lw;

  scalar_t v1 = 0;
  if (h_low >= 0 && w_low >= 0)
    v1 = in[h_low * width + w_low];
  scalar_t v2 = 0;
  if (h_low >= 0 && w_high <= width - 1)
    v2 = in[h_low * width + w_high];
  scalar_t v3 = 0;
  if (h_high <= height - 1 && w_low >= 0)
    v3 = in[h_high * width + w_low];
  scalar_t v4 = 0;
  if (h_high <= height - 1 && w_high <= width - 1)
    v4 = in[h_high * width + w_high];

  scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;

  scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <typename scalar_t>
static void deformable_im2col_kernel(
    const int n,
    const scalar_t* input,
    const scalar_t* offset,
    const int height,
    const int width,
    const int weight_h,
    const int weight_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dil_h,
    const int dil_w,
    const int batch_sz,
    const int n_in_channels,
    const int n_offset_grps,
    const int out_h,
    const int out_w,
    scalar_t* columns) {
  for (int index = 0; index != n; ++index) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int out_b = (index / (out_w * out_h)) % batch_sz;
    const int in_c = index / (out_w * out_h * batch_sz);
    const int out_c = in_c * weight_h * weight_w;

    int c_per_offset_grp = n_in_channels / n_offset_grps;
    const int grp_idx = in_c / c_per_offset_grp;

    auto columns_ptr = columns +
        (out_c * (batch_sz * out_h * out_w) + out_b * (out_h * out_w) +
         out_y * out_w + out_x);

    auto input_ptr = input +
        (out_b * (n_in_channels * height * width) + in_c * (height * width));

    auto offset_ptr = offset +
        (out_b * n_offset_grps + grp_idx) * 2 * weight_h * weight_w * out_h *
            out_w;

    for (int i = 0; i < weight_h; ++i) {
      for (int j = 0; j < weight_w; ++j) {
        const int offset_idx = 2 * (i * weight_w + j);
        const scalar_t offset_h =
            offset_ptr[offset_idx * (out_h * out_w) + out_y * out_w + out_x];
        const scalar_t offset_w = offset_ptr
            [(offset_idx + 1) * (out_h * out_w) + out_y * out_w + out_x];
        const scalar_t y = (out_y * stride_h - pad_h) + i * dil_h + offset_h;
        const scalar_t x = (out_x * stride_w - pad_w) + j * dil_w + offset_w;
        *columns_ptr = bilinear_interpolate(input_ptr, height, width, y, x);
        columns_ptr += batch_sz * out_h * out_w;
      }
    }
  }
}

static void deformable_im2col(
    const at::Tensor input,
    const at::Tensor data_offset,
    int n_in_channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dil_h,
    int dil_w,
    int out_h,
    int out_w,
    int parallel_imgs,
    int deformable_group,
    at::Tensor data_col) {
  int num_kernels = n_in_channels * out_h * out_w * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "deformable_im2col", ([&] {
        deformable_im2col_kernel(
            num_kernels,
            input.data_ptr<scalar_t>(),
            data_offset.data_ptr<scalar_t>(),
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dil_h,
            dil_w,
            parallel_imgs,
            n_in_channels,
            deformable_group,
            out_h,
            out_w,
            data_col.data_ptr<scalar_t>());
      }));
}

static int get_greatest_divisor_below_bound(int n, int bound) {
  for (int k = bound; k > 1; --k) {
    if (n % k == 0) {
      return k;
    }
  }
  return 1;
}

at::Tensor DeformConv2d_forward_cpu(
    const at::Tensor& input_param,
    const at::Tensor& weight_param,
    const at::Tensor& offset_param,
    const at::Tensor& bias,
    std::pair<int, int> stride,
    std::pair<int, int> pad,
    std::pair<int, int> dilation,
    int n_weight_grps,
    int n_offset_grps) {
  at::Tensor input = input_param;
  at::Tensor offset = offset_param;
  at::Tensor weight = weight_param;

  TORCH_CHECK(input.ndimension() == 4);
  TORCH_CHECK(offset.ndimension() == 4);
  TORCH_CHECK(weight.ndimension() == 4);
  TORCH_CHECK(input.is_contiguous());
  TORCH_CHECK(offset.is_contiguous());
  TORCH_CHECK(weight.is_contiguous());
  TORCH_CHECK(input.device().is_cpu(), "input must be a CPU tensor");

  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

  // Unpack shapes and args
  int out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  int stride_h = stride.first;
  int stride_w = stride.second;

  int pad_h = pad.first;
  int pad_w = pad.second;

  int dil_h = dilation.first;
  int dil_w = dilation.second;

  int ker_h = dil_h * (weight_h - 1) + 1;
  int ker_w = dil_w * (weight_w - 1) + 1;
  int out_h = ((in_h + 2 * pad_h - ker_h) / stride_h) + 1;
  int out_w = ((in_w + 2 * pad_w - ker_w) / stride_w) + 1;

  TORCH_CHECK(
      weight_h > 0 && weight_w > 0,
      "weight_h: ",
      weight_h,
      " weight_w: ",
      weight_w);
  TORCH_CHECK(
      stride_h > 0 && stride_w > 0,
      "stride_h: ",
      stride_h,
      " stride_w: ",
      stride_w);
  TORCH_CHECK(pad_h >= 0 && pad_w >= 0, "pad_h: ", pad_h, " pad_w: ", pad_w);
  TORCH_CHECK(dil_h > 0 && dil_w > 0, "dil_h: ", dil_h, " dil_w: ", dil_w);

  TORCH_CHECK(weight.size(1) * n_weight_grps == input.size(1));
  TORCH_CHECK(weight.size(0) % n_weight_grps == 0);
  TORCH_CHECK(
      (offset.size(1) == n_offset_grps * 2 * weight_h * weight_w),
301
      "offset.shape[1] is not valid: got: ",
302
303
304
      offset.size(1),
      " expected: ",
      n_offset_grps * 2 * weight_h * weight_w);
305
306
307
308
  TORCH_CHECK(input.size(1) % n_offset_grps == 0);

  TORCH_CHECK(
      (offset.size(0) == input.size(0)), "invalid batch size of offset");
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  TORCH_CHECK(
      (offset.size(2) == out_h && offset.size(3) == out_w),
      "offset output dims: (",
      offset.size(2),
      ", ",
      offset.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
  TORCH_CHECK(
      out_h > 0 && out_w > 0,
      "Calculated output size too small - out_h: ",
      out_h,
      " out_w: ",
      out_w);

  auto out = at::zeros({batch_sz, out_channels, out_h, out_w}, input.options());

  // Separate batches into blocks
  out = out.view({batch_sz / n_parallel_imgs,
                  n_parallel_imgs,
                  out_channels,
                  out_h,
                  out_w});
  input = input.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
  offset = offset.view({batch_sz / n_parallel_imgs,
                        n_parallel_imgs,
                        n_offset_grps * 2 * weight_h * weight_w,
                        out_h,
                        out_w});
  at::Tensor out_buf = at::zeros(
      {batch_sz / n_parallel_imgs,
       out_channels,
       n_parallel_imgs * out_h,
       out_w},
      out.options());

  // Separate channels into convolution groups
  out_buf = out_buf.view({out_buf.size(0),
                          n_weight_grps,
                          out_buf.size(1) / n_weight_grps,
                          out_buf.size(2),
                          out_buf.size(3)});
  weight = weight.view({n_weight_grps,
                        weight.size(0) / n_weight_grps,
                        weight.size(1),
                        weight.size(2),
                        weight.size(3)});

  // Sample points and perform convolution
  auto columns = at::zeros(
      {n_in_channels * weight_h * weight_w, n_parallel_imgs * out_h * out_w},
      input.options());
  for (int b = 0; b < batch_sz / n_parallel_imgs; b++) {
    deformable_im2col(
        input[b],
        offset[b],
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
        columns);

    columns = columns.view(
        {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
    for (int g = 0; g < n_weight_grps; g++) {
      out_buf[b][g] = out_buf[b][g]
                          .flatten(1)
                          .addmm_(weight[g].flatten(1), columns[g])
                          .view_as(out_buf[b][g]);
    }
395
396
    columns = columns.view(
        {columns.size(0) * columns.size(1), columns.size(2)});
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
  }

  out_buf = out_buf.view({batch_sz / n_parallel_imgs,
                          out_channels,
                          n_parallel_imgs,
                          out_h,
                          out_w});
  out_buf.transpose_(1, 2);
  out.copy_(out_buf);
  out = out.view({batch_sz, out_channels, out_h, out_w});

  return out + bias.view({1, out_channels, 1, 1});
}

template <typename scalar_t>
static void deformable_col2im_kernel(
    const int n,
    const scalar_t* col,
    const scalar_t* offset,
    const int channels,
    const int height,
    const int width,
    const int kernel_h,
    const int kernel_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int batch_sz,
    const int n_offset_grps,
    const int out_h,
    const int out_w,
    scalar_t* grad_im) {
  for (int index = 0; index != n; ++index) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int b = (index / (out_w * out_h)) % batch_sz;
    const int j = (index / (out_w * out_h * batch_sz)) % kernel_w;
    const int i = (index / (out_w * out_h * batch_sz * kernel_w)) % kernel_h;
    const int c = index / (out_w * out_h * batch_sz * kernel_w * kernel_h);

    int c_per_offset_grp = channels / n_offset_grps;
    const int offset_grp = c / c_per_offset_grp;

    auto offset_ptr = offset +
        (b * n_offset_grps + offset_grp) * 2 * kernel_h * kernel_w * out_h *
            out_w;
    const int offset_h_ptr =
        ((2 * (i * kernel_w + j)) * out_h + out_y) * out_w + out_x;
    const int offset_w_ptr =
        ((2 * (i * kernel_w + j) + 1) * out_h + out_y) * out_w + out_x;
    const scalar_t offset_h = offset_ptr[offset_h_ptr];
    const scalar_t offset_w = offset_ptr[offset_w_ptr];
    const scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
    const scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

    for (int dy = -1; dy <= 1; dy++) {
      for (int dx = -1; dx <= 1; dx++) {
        int yp = int(y) + dy;
        int xp = int(x) + dx;
        if (0 <= yp && yp < height && 0 <= xp && xp < width &&
            std::abs(y - yp) < 1 && std::abs(x - xp) < 1) {
          int grad_pos = ((b * channels + c) * height + yp) * width + xp;
          scalar_t weight = (1 - std::abs(y - yp)) * (1 - std::abs(x - xp));
          grad_im[grad_pos] += weight * col[index];
        }
      }
    }
  }
}

static void compute_grad_input(
    const at::Tensor columns,
    const at::Tensor offset,
    const int channels,
    const int height,
    const int width,
    const int weight_h,
    const int weight_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int parallel_imgs,
    const int n_offset_grps,
    at::Tensor grad_im) {
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      channels * weight_h * weight_w * out_h * out_w * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      columns.scalar_type(), "deformable_col2im", ([&] {
        deformable_col2im_kernel(
            num_kernels,
            columns.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            n_offset_grps,
            out_h,
            out_w,
            grad_im.data_ptr<scalar_t>());
      }));
}

template <typename scalar_t>
static scalar_t get_coordinate_weight(
    const scalar_t* im_data,
    const int height,
    const int width,
    scalar_t y,
    scalar_t x,
    bool is_y_direction) {
  int y_l = floor(y);
  int x_l = floor(x);
  int y_h = y_l + 1;
  int x_h = x_l + 1;

  bool valid_y_l = 0 <= y_l && y_l < height;
  bool valid_y_h = 0 <= y_h && y_h < height;
  bool valid_x_l = 0 <= x_l && x_l < width;
  bool valid_x_h = 0 <= x_h && x_h < width;

  scalar_t zero = 0;
  scalar_t v_yx = (valid_y_l && valid_x_l) ? im_data[y_l * width + x_l] : zero;
  scalar_t v_yX = (valid_y_l && valid_x_h) ? im_data[y_l * width + x_h] : zero;
  scalar_t v_Yx = (valid_y_h && valid_x_l) ? im_data[y_h * width + x_l] : zero;
  scalar_t v_YX = (valid_y_h && valid_x_h) ? im_data[y_h * width + x_h] : zero;

  if (is_y_direction) {
    scalar_t dx = x - x_l;
    return dx * (v_YX - v_yX) + (1 - dx) * (v_Yx - v_yx);
  } else {
    scalar_t dy = y - y_l;
    return dy * (v_YX - v_Yx) + (1 - dy) * (v_yX - v_yx);
  }
}

template <typename scalar_t>
static void deformable_col2im_coord_kernel(
    const int n,
    const scalar_t* col,
    const scalar_t* im,
    const scalar_t* offset,
    const int channels,
    const int height,
    const int width,
    const int weight_h,
    const int weight_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int batch_sz,
    const int offset_channels,
    const int n_offset_grps,
    const int out_h,
    const int out_w,
    scalar_t* grad_offset) {
  for (int index = 0; index != n; ++index) {
    scalar_t val = 0;
    int w = index % out_w;
    int h = (index / out_w) % out_h;
    int c = (index / (out_w * out_h)) % offset_channels;
    int b = index / (out_w * out_h * offset_channels);

    const int offset_grp = c / (2 * weight_h * weight_w);
    const int col_step = weight_h * weight_w;

    int c_per_offset_grp = channels / n_offset_grps;

    auto col_ptr = col +
        offset_grp * c_per_offset_grp * weight_h * weight_w * batch_sz * out_w *
            out_h;
    auto im_ptr = im +
        (b * n_offset_grps + offset_grp) * c_per_offset_grp * height * width;
    auto offset_ptr = offset +
        (b * n_offset_grps + offset_grp) * 2 * weight_h * weight_w * out_h *
            out_w;

    const int offset_c = c - offset_grp * 2 * weight_h * weight_w;
    const int is_y_direction = offset_c % 2 == 0;

    const int c_bound = c_per_offset_grp * weight_h * weight_w;
    for (int col_c = (offset_c / 2); col_c < c_bound; col_c += col_step) {
      const int col_pos = (((col_c * batch_sz + b) * out_h) + h) * out_w + w;

      int out_x = col_pos % out_w;
      int out_y = (col_pos / out_w) % out_h;
      int j = (col_pos / (out_w * out_h * batch_sz)) % weight_w;
      int i = (col_pos / (out_w * out_h * batch_sz * weight_w)) % weight_h;

      const int offset_h_idx =
          (((2 * (i * weight_w + j)) * out_h + out_y) * out_w + out_x);
      const int offset_w_idx =
          (((2 * (i * weight_w + j) + 1) * out_h + out_y) * out_w + out_x);
      const scalar_t offset_h = offset_ptr[offset_h_idx];
      const scalar_t offset_w = offset_ptr[offset_w_idx];

      scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
      scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

      const scalar_t weight =
          get_coordinate_weight(im_ptr, height, width, y, x, is_y_direction);
      val += weight * col_ptr[col_pos];
      im_ptr += height * width;
    }

    grad_offset[index] = val;
  }
}

static void compute_grad_offset(
    const at::Tensor columns,
    const at::Tensor input,
    const at::Tensor offset,
    const int channels,
    const int height,
    const int width,
    const int weight_h,
    const int weight_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int parallel_imgs,
    const int n_offset_grps,
    at::Tensor grad_offset) {
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      out_h * out_w * 2 * weight_h * weight_w * n_offset_grps * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      columns.scalar_type(), "deformable_col2im_coord", ([&] {
        deformable_col2im_coord_kernel(
            num_kernels,
            columns.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            2 * weight_h * weight_w * n_offset_grps,
            n_offset_grps,
            out_h,
            out_w,
            grad_offset.data_ptr<scalar_t>());
      }));
}

static std::tuple<at::Tensor, at::Tensor> deform_conv2d_backward_input_cpu(
    at::Tensor input,
    at::Tensor weight,
    at::Tensor offset,
    at::Tensor grad_out,
    std::pair<int, int> stride,
    std::pair<int, int> pad,
    std::pair<int, int> dilation,
    int n_weight_grps,
    int n_offset_grps,
    int n_parallel_imgs) {
  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  int stride_h = stride.first;
  int stride_w = stride.second;

  int pad_h = pad.first;
  int pad_w = pad.second;

  int dil_h = dilation.first;
  int dil_w = dilation.second;

  long out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) / stride_h + 1;
  long out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) / stride_w + 1;

  auto grad_input = at::zeros_like(input);
  auto grad_offset = at::zeros_like(offset);
  auto columns = at::zeros(
      {n_in_channels * weight_w * weight_h, n_parallel_imgs * out_h * out_w},
      input.options());

  // Separate into blocks
  grad_input = grad_input.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
  input = input.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
  grad_offset = grad_offset.view({batch_sz / n_parallel_imgs,
                                  n_parallel_imgs,
                                  n_offset_grps * 2 * weight_h * weight_w,
                                  out_h,
                                  out_w});
  offset = offset.view({batch_sz / n_parallel_imgs,
                        n_parallel_imgs,
                        n_offset_grps * 2 * weight_h * weight_w,
                        out_h,
                        out_w});

  grad_out = grad_out.view({batch_sz / n_parallel_imgs,
                            n_parallel_imgs,
                            n_out_channels,
                            out_h,
                            out_w});
  grad_out.transpose_(1, 2);
  grad_out = grad_out.view({grad_out.size(0),
                            n_weight_grps,
                            grad_out.size(1) / n_weight_grps,
                            grad_out.size(2),
                            grad_out.size(3),
                            grad_out.size(4)});

749
750
751
752
753
754
  weight = weight.view({n_weight_grps,
                        weight.size(0) / n_weight_grps,
                        weight.size(1),
                        weight.size(2),
                        weight.size(3)});
    
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
    // Separate into weight groups
    columns = columns.view(
        {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
    for (int g = 0; g < n_weight_grps; g++) {
      columns[g] = columns[g].addmm_(
          weight[g].flatten(1).transpose(0, 1), grad_out[elt][g].flatten(1));
    }
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});

    compute_grad_offset(
        columns,
        input[elt],
        offset[elt],
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        n_parallel_imgs,
        n_offset_grps,
        grad_offset[elt]);

    compute_grad_input(
        columns,
        offset[elt],
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        n_parallel_imgs,
        n_offset_grps,
        grad_input[elt]);
  }

  grad_out = grad_out.view({grad_out.size(0),
                            grad_out.size(1) * grad_out.size(2),
                            grad_out.size(3),
                            grad_out.size(4),
                            grad_out.size(5)});
  grad_out.transpose_(1, 2);
  grad_out = grad_out.view({batch_sz, n_out_channels, out_h, out_w});

  grad_input = grad_input.view({batch_sz, n_in_channels, in_h, in_w});
  input = input.view({batch_sz, n_in_channels, in_h, in_w});
  grad_offset = grad_offset.view(
      {batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});
  offset = offset.view(
      {batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});

  return std::make_tuple(grad_input, grad_offset);
}

static at::Tensor deform_conv2d_backward_parameters_cpu(
    at::Tensor input,
    at::Tensor weight,
    at::Tensor offset,
    at::Tensor grad_out,
    std::pair<int, int> stride,
    std::pair<int, int> pad,
    std::pair<int, int> dilation,
    int n_weight_grps,
    int n_offset_grps,
    int n_parallel_imgs) {
  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  int stride_h = stride.first;
  int stride_w = stride.second;

  int pad_h = pad.first;
  int pad_w = pad.second;

  int dil_h = dilation.first;
  int dil_w = dilation.second;

  long out_h = grad_out.size(2);
  long out_w = grad_out.size(3);

  auto grad_weight = at::zeros_like(weight);
  ;
  auto columns = at::zeros(
      {n_in_channels * weight_w * weight_h, n_parallel_imgs * out_h * out_w},
      input.options());

  grad_out = grad_out.view({batch_sz / n_parallel_imgs,
                            n_parallel_imgs,
                            n_out_channels,
                            out_h,
                            out_w});
  grad_out.transpose_(1, 2);

  at::Tensor grad_out_buf = at::zeros_like(grad_out);
  grad_out_buf.copy_(grad_out);
  grad_out_buf = grad_out_buf.view({batch_sz / n_parallel_imgs,
                                    n_out_channels,
                                    n_parallel_imgs * out_h,
                                    out_w});
  grad_out_buf = grad_out_buf.view({grad_out_buf.size(0),
                                    n_weight_grps,
                                    grad_out_buf.size(1) / n_weight_grps,
                                    grad_out_buf.size(2),
                                    grad_out_buf.size(3)});

  grad_out.transpose_(1, 2);
  grad_out = grad_out.view({batch_sz, n_out_channels, out_h, out_w});

  input = input.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
  offset = offset.view({batch_sz / n_parallel_imgs,
                        n_parallel_imgs,
                        n_offset_grps * 2 * weight_h * weight_w,
                        out_h,
                        out_w});

  grad_weight = grad_weight.view({n_weight_grps,
                                  grad_weight.size(0) / n_weight_grps,
                                  grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3)});
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
    deformable_im2col(
        input[elt],
        offset[elt],
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
        columns);

    columns = columns.view(
        {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
    for (int g = 0; g < n_weight_grps; g++) {
      grad_weight[g] =
          grad_weight[g]
              .flatten(1)
              .addmm_(
                  grad_out_buf[elt][g].flatten(1), columns[g].transpose(1, 0))
              .view_as(grad_weight[g]);
    }
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
  }

  input = input.view({batch_sz, n_in_channels, in_h, in_w});
  offset = offset.view(
      {batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});

  grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3),
                                  grad_weight.size(4)});
  return grad_weight;
}

std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor>
DeformConv2d_backward_cpu(
    const at::Tensor& grad_out,
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& bias,
    std::pair<int, int> stride,
    std::pair<int, int> pad,
    std::pair<int, int> dilation,
    int n_weight_grps,
    int n_offset_grps) {
  const int batch_sz = input.size(0);
  const int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

  auto grad_input_and_offset = deform_conv2d_backward_input_cpu(
      input,
      weight,
      offset,
      grad_out,
      stride,
      pad,
      dilation,
      n_weight_grps,
      n_offset_grps,
      n_parallel_imgs);

  auto grad_input = std::get<0>(grad_input_and_offset);
  auto grad_offset = std::get<1>(grad_input_and_offset);

  auto grad_weight = deform_conv2d_backward_parameters_cpu(
      input,
      weight,
      offset,
      grad_out,
      stride,
      pad,
      dilation,
      n_weight_grps,
      n_offset_grps,
      n_parallel_imgs);

  auto grad_bias = at::ones_like(bias) * grad_out.sum({0, 2, 3});

  return std::make_tuple(grad_input, grad_weight, grad_offset, grad_bias);
}