metrics.py 1.91 KB
Newer Older
Ponku's avatar
Ponku committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
from typing import Dict, List, Optional, Tuple

from torch import Tensor

AVAILABLE_METRICS = ["mae", "rmse", "epe", "bad1", "bad2", "epe", "1px", "3px", "5px", "fl-all", "relepe"]


def compute_metrics(
    flow_pred: Tensor, flow_gt: Tensor, valid_flow_mask: Optional[Tensor], metrics: List[str]
) -> Tuple[Dict[str, float], int]:
    for m in metrics:
        if m not in AVAILABLE_METRICS:
            raise ValueError(f"Invalid metric: {m}. Valid metrics are: {AVAILABLE_METRICS}")

    metrics_dict = {}

    pixels_diffs = (flow_pred - flow_gt).abs()
18
    # there is no Y flow in Stereo Matching, therefore flow.abs() = flow.pow(2).sum(dim=1).sqrt()
Ponku's avatar
Ponku committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    flow_norm = flow_gt.abs()

    if valid_flow_mask is not None:
        valid_flow_mask = valid_flow_mask.unsqueeze(1)
        pixels_diffs = pixels_diffs[valid_flow_mask]
        flow_norm = flow_norm[valid_flow_mask]

    num_pixels = pixels_diffs.numel()
    if "bad1" in metrics:
        metrics_dict["bad1"] = (pixels_diffs > 1).float().mean().item()
    if "bad2" in metrics:
        metrics_dict["bad2"] = (pixels_diffs > 2).float().mean().item()

    if "mae" in metrics:
        metrics_dict["mae"] = pixels_diffs.mean().item()
    if "rmse" in metrics:
        metrics_dict["rmse"] = pixels_diffs.pow(2).mean().sqrt().item()
    if "epe" in metrics:
        metrics_dict["epe"] = pixels_diffs.mean().item()
    if "1px" in metrics:
        metrics_dict["1px"] = (pixels_diffs < 1).float().mean().item()
    if "3px" in metrics:
        metrics_dict["3px"] = (pixels_diffs < 3).float().mean().item()
    if "5px" in metrics:
        metrics_dict["5px"] = (pixels_diffs < 5).float().mean().item()
    if "fl-all" in metrics:
        metrics_dict["fl-all"] = ((pixels_diffs < 3) & ((pixels_diffs / flow_norm) < 0.05)).float().mean().item() * 100
    if "relepe" in metrics:
        metrics_dict["relepe"] = (pixels_diffs / flow_norm).mean().item()

    return metrics_dict, num_pixels