roi_pool.cpp 5.39 KB
Newer Older
1
#include "roi_pool.h"
2
3
4

#include <torch/autograd.h>
#include <torch/types.h>
5

6
7
namespace vision {
namespace ops {
8
9

std::tuple<at::Tensor, at::Tensor> roi_pool(
10
11
    const at::Tensor& input,
    const at::Tensor& rois,
12
13
14
15
16
17
18
19
20
21
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::roi_pool", "")
                       .typed<decltype(roi_pool)>();
  return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}

at::Tensor _roi_pool_backward(
22
23
24
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
25
26
27
28
29
30
31
32
33
34
35
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::_roi_pool_backward", "")
                       .typed<decltype(_roi_pool_backward)>();
  return op.call(
36
37
38
39
40
41
42
43
44
45
      grad,
      rois,
      argmax,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width);
46
47
}

48
49
50
51
52
53
54
TORCH_LIBRARY_FRAGMENT(torchvision, m) {
  m.def(
      "roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)");
  m.def(
      "_roi_pool_backward(Tensor grad, Tensor rois, Tensor argmax, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor");
}

55
56
namespace {

57
58
class ROIPoolFunction : public torch::autograd::Function<ROIPoolFunction> {
 public:
59
60
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
61
62
63
64
65
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width) {
66
67
68
69
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["input_shape"] = input.sizes();
70
71
72
73
    at::AutoNonVariableTypeMode g;
    auto result =
        roi_pool(input, rois, spatial_scale, pooled_height, pooled_width);

74
75
76
77
    auto output = std::get<0>(result);
    auto argmax = std::get<1>(result);
    ctx->save_for_backward({rois, argmax});
    ctx->mark_non_differentiable({argmax});
78

79
80
81
    return {output, argmax};
  }

82
83
  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
84
      const torch::autograd::variable_list& grad_output) {
85
86
87
88
89
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto argmax = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
90
    auto grad_in = _roi_pool_backward(
91
92
93
94
95
96
97
98
99
100
        grad_output[0],
        rois,
        argmax,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);
101

102
103
104
105
106
    return {grad_in,
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable()};
107
108
109
  }
};

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// TODO: There should be an easier way to do this
class ROIPoolBackwardFunction
    : public torch::autograd::Function<ROIPoolBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& argmax,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t batch_size,
      int64_t channels,
      int64_t height,
      int64_t width) {
    at::AutoNonVariableTypeMode g;
    auto grad_in = _roi_pool_backward(
        grad,
        rois,
        argmax,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on roi_pool not supported");
  }
};

149
std::tuple<at::Tensor, at::Tensor> roi_pool_autograd(
150
151
    const at::Tensor& input,
    const at::Tensor& rois,
152
153
154
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
155
156
  auto result = ROIPoolFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width);
157
158
159
160

  return std::make_tuple(result[0], result[1]);
}

161
at::Tensor roi_pool_backward_autograd(
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  return ROIPoolBackwardFunction::apply(
      grad,
      rois,
      argmax,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width)[0];
183
}
184

185
186
} // namespace

187
188
189
190
191
TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
  m.impl("roi_pool", roi_pool_autograd);
  m.impl("_roi_pool_backward", roi_pool_backward_autograd);
}

192
193
} // namespace ops
} // namespace vision