ps_roi_pool.cpp 5.55 KB
Newer Older
1
#include "ps_roi_pool.h"
2
3
4

#include <torch/autograd.h>
#include <torch/types.h>
5

6
7
namespace vision {
namespace ops {
8
9

std::tuple<at::Tensor, at::Tensor> ps_roi_pool(
10
11
    const at::Tensor& input,
    const at::Tensor& rois,
12
13
14
15
16
17
18
19
20
21
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::ps_roi_pool", "")
                       .typed<decltype(ps_roi_pool)>();
  return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}

at::Tensor _ps_roi_pool_backward(
22
23
    const at::Tensor& grad,
    const at::Tensor& rois,
24
25
26
27
28
29
30
31
32
33
34
35
36
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  static auto op =
      c10::Dispatcher::singleton()
          .findSchemaOrThrow("torchvision::_ps_roi_pool_backward", "")
          .typed<decltype(_ps_roi_pool_backward)>();
  return op.call(
37
38
      grad,
      rois,
39
      channel_mapping,
40
41
42
43
44
45
46
47
48
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width);
}

49
50
51
52
53
54
55
TORCH_LIBRARY_FRAGMENT(torchvision, m) {
  m.def(
      "ps_roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)");
  m.def(
      "_ps_roi_pool_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor");
}

56
57
namespace {

58
59
class PSROIPoolFunction : public torch::autograd::Function<PSROIPoolFunction> {
 public:
60
61
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
62
63
64
65
66
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width) {
67
68
69
70
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["input_shape"] = input.sizes();
71
72
73
74
    at::AutoNonVariableTypeMode g;
    auto result =
        ps_roi_pool(input, rois, spatial_scale, pooled_height, pooled_width);

75
76
77
78
    auto output = std::get<0>(result);
    auto channel_mapping = std::get<1>(result);
    ctx->save_for_backward({rois, channel_mapping});
    ctx->mark_non_differentiable({channel_mapping});
79

80
81
82
    return {output, channel_mapping};
  }

83
84
  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
85
      const torch::autograd::variable_list& grad_output) {
86
87
88
89
90
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto channel_mapping = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
91
    auto grad_in = _ps_roi_pool_backward(
92
93
94
95
96
97
98
99
100
101
        grad_output[0],
        rois,
        channel_mapping,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);
102

103
104
105
106
107
    return {grad_in,
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable()};
108
109
110
  }
};

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// TODO: There should be an easier way to do this
class PSROIPoolBackwardFunction
    : public torch::autograd::Function<PSROIPoolBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& channel_mapping,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t batch_size,
      int64_t channels,
      int64_t height,
      int64_t width) {
    at::AutoNonVariableTypeMode g;
    auto grad_in = _ps_roi_pool_backward(
        grad,
        rois,
        channel_mapping,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on ps_roi_pool not supported");
  }
};

150
std::tuple<at::Tensor, at::Tensor> ps_roi_pool_autograd(
151
152
    const at::Tensor& input,
    const at::Tensor& rois,
153
154
155
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
156
157
  auto result = PSROIPoolFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width);
158
159
160
161

  return std::make_tuple(result[0], result[1]);
}

162
at::Tensor ps_roi_pool_backward_autograd(
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  return PSROIPoolBackwardFunction::apply(
      grad,
      rois,
      channel_mapping,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width)[0];
184
}
185

186
187
} // namespace

188
189
190
191
192
TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
  m.impl("ps_roi_pool", ps_roi_pool_autograd);
  m.impl("_ps_roi_pool_backward", ps_roi_pool_backward_autograd);
}

193
194
} // namespace ops
} // namespace vision