roi_align_kernel.cu 12.9 KB
Newer Older
1
#include <ATen/ATen.h>
2
3
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
4
#include <torch/library.h>
5
#include <THC/THCAtomics.cuh>
6
7

#include "cuda_helpers.h"
8
9
10
11
12

namespace vision {
namespace ops {

namespace {
13
14
15
16

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
17
18
    int height,
    int width,
19
20
    T y,
    T x,
21
    int index /* index for debug only*/) {
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
69
__global__ void roi_align_forward_kernel_impl(
70
    int nthreads,
71
72
    const T* input,
    const T spatial_scale,
73
74
75
76
77
78
79
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
80
81
82
83
84
85
86
87
88
89
90
91
92
    const T* rois,
    T* output) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
93
94
95
96
97
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
98

99
100
101
102
103
104
105
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = max(roi_width, (T)1.);
      roi_height = max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
AhnDW's avatar
AhnDW committed
121
122
    // When the grid is empty, output zeros.
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    output[index] = output_val;
  }
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
147
148
    int height,
    int width,
149
150
151
152
153
154
155
156
157
158
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
159
    int index /* index for debug only*/) {
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
}

template <typename T>
205
__global__ void roi_align_backward_kernel_impl(
206
    int nthreads,
207
208
    const T* grad_output,
    const T spatial_scale,
209
210
211
212
213
214
215
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
216
217
    T* grad_input,
    const T* rois,
218
219
220
221
    int n_stride,
    int c_stride,
    int h_stride,
    int w_stride) {
222
223
224
225
226
227
228
229
230
231
232
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
233
234
235
236
237
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
238

239
240
241
242
243
244
245
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = max(roi_width, (T)1.);
      roi_height = max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_grad_input =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    // We need to index the gradient using the tensor strides to access the
    // correct values.
    int output_offset = n * n_stride + c * c_stride;
    const T* offset_grad_output = grad_output + output_offset;
    const T grad_output_this_bin =
        offset_grad_output[ph * h_stride + pw * w_stride];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          atomicAdd(
              offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
          atomicAdd(
              offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
          atomicAdd(
              offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
          atomicAdd(
              offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
316
}
317

318
at::Tensor roi_align_forward_kernel(
319
320
    const at::Tensor& input,
    const at::Tensor& rois,
321
322
323
324
325
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    bool aligned) {
vfdev's avatar
vfdev committed
326
327
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
328
  TORCH_CHECK(rois.size(1) == 5, "rois must have shape as Tensor[K, 5]");
329
330
331

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

332
  at::CheckedFrom c = "roi_align_forward_kernel";
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());

  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
349
  dim3 grid(std::min(
350
      ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
351
      static_cast<int64_t>(4096)));
352
353
354
355
356
357
358
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return output;
  }

359
360
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
361
      input.scalar_type(), "roi_align_forward_kernel", [&] {
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        roi_align_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
            output_size,
            input_.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            rois_.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>());
      });
376
377
378
379
  AT_CUDA_CHECK(cudaGetLastError());
  return output;
}

380
at::Tensor roi_align_backward_kernel(
381
382
    const at::Tensor& grad,
    const at::Tensor& rois,
383
384
385
386
387
388
389
390
391
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width,
    int64_t sampling_ratio,
    bool aligned) {
vfdev's avatar
vfdev committed
392
393
  TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
394
395
396

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};

397
  at::CheckedFrom c = "roi_align_backward_kernel";
398
399
400
401
402
403
404
405
406
407
  at::checkAllSameGPU(c, {grad_t, rois_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
408
  dim3 grid(std::min(
409
      ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
410
      static_cast<int64_t>(4096)));
411
412
413
414
415
416
417
418
419
420
421
422
423
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

424
  auto rois_ = rois.contiguous();
425
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
426
      grad.scalar_type(), "roi_align_backward_kernel", [&] {
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        roi_align_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
            grad.numel(),
            grad.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            grad_input.data_ptr<scalar_t>(),
            rois_.data_ptr<scalar_t>(),
            n_stride,
            c_stride,
            h_stride,
            w_stride);
      });
445
446
447
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}
448

449
450
451
452
453
454
455
} // namespace

TORCH_LIBRARY_IMPL(torchvision, CUDA, m) {
  m.impl("roi_align", roi_align_forward_kernel);
  m.impl("_roi_align_backward", roi_align_backward_kernel);
}

456
457
} // namespace ops
} // namespace vision