rpn.py 15 KB
Newer Older
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch.nn import functional as F
eellison's avatar
eellison committed
4
from torch import nn, Tensor
5

6
import torchvision
7
8
9
from torchvision.ops import boxes as box_ops

from . import _utils as det_utils
eellison's avatar
eellison committed
10
11
from .image_list import ImageList

12
from typing import List, Optional, Dict, Tuple
13

14
15
16
# Import AnchorGenerator to keep compatibility.
from .anchor_utils import AnchorGenerator

17

18
19
@torch.jit.unused
def _onnx_get_num_anchors_and_pre_nms_top_n(ob, orig_pre_nms_top_n):
eellison's avatar
eellison committed
20
    # type: (Tensor, int) -> Tuple[int, int]
21
22
23
24
    from torch.onnx import operators
    num_anchors = operators.shape_as_tensor(ob)[1].unsqueeze(0)
    pre_nms_top_n = torch.min(torch.cat(
        (torch.tensor([orig_pre_nms_top_n], dtype=num_anchors.dtype),
25
         num_anchors), 0))
26
27
28
29

    return num_anchors, pre_nms_top_n


30
31
32
class RPNHead(nn.Module):
    """
    Adds a simple RPN Head with classification and regression heads
33

34
    Args:
35
36
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
37
38
39
40
41
42
43
44
45
46
47
48
    """

    def __init__(self, in_channels, num_anchors):
        super(RPNHead, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1
        )
        self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
        self.bbox_pred = nn.Conv2d(
            in_channels, num_anchors * 4, kernel_size=1, stride=1
        )

Francisco Massa's avatar
Francisco Massa committed
49
50
51
        for layer in self.children():
            torch.nn.init.normal_(layer.weight, std=0.01)
            torch.nn.init.constant_(layer.bias, 0)
52
53

    def forward(self, x):
54
        # type: (List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
55
56
57
58
59
60
61
62
63
64
        logits = []
        bbox_reg = []
        for feature in x:
            t = F.relu(self.conv(feature))
            logits.append(self.cls_logits(t))
            bbox_reg.append(self.bbox_pred(t))
        return logits, bbox_reg


def permute_and_flatten(layer, N, A, C, H, W):
65
    # type: (Tensor, int, int, int, int, int) -> Tensor
66
67
68
69
70
71
72
    layer = layer.view(N, -1, C, H, W)
    layer = layer.permute(0, 3, 4, 1, 2)
    layer = layer.reshape(N, -1, C)
    return layer


def concat_box_prediction_layers(box_cls, box_regression):
73
    # type: (List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    box_cls_flattened = []
    box_regression_flattened = []
    # for each feature level, permute the outputs to make them be in the
    # same format as the labels. Note that the labels are computed for
    # all feature levels concatenated, so we keep the same representation
    # for the objectness and the box_regression
    for box_cls_per_level, box_regression_per_level in zip(
        box_cls, box_regression
    ):
        N, AxC, H, W = box_cls_per_level.shape
        Ax4 = box_regression_per_level.shape[1]
        A = Ax4 // 4
        C = AxC // A
        box_cls_per_level = permute_and_flatten(
            box_cls_per_level, N, A, C, H, W
        )
        box_cls_flattened.append(box_cls_per_level)

        box_regression_per_level = permute_and_flatten(
            box_regression_per_level, N, A, 4, H, W
        )
        box_regression_flattened.append(box_regression_per_level)
    # concatenate on the first dimension (representing the feature levels), to
    # take into account the way the labels were generated (with all feature maps
    # being concatenated as well)
99
    box_cls = torch.cat(box_cls_flattened, dim=1).flatten(0, -2)
100
101
102
103
104
    box_regression = torch.cat(box_regression_flattened, dim=1).reshape(-1, 4)
    return box_cls, box_regression


class RegionProposalNetwork(torch.nn.Module):
105
106
107
    """
    Implements Region Proposal Network (RPN).

108
    Args:
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        head (nn.Module): module that computes the objectness and regression deltas
        fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
        pre_nms_top_n (Dict[int]): number of proposals to keep before applying NMS. It should
            contain two fields: training and testing, to allow for different values depending
            on training or evaluation
        post_nms_top_n (Dict[int]): number of proposals to keep after applying NMS. It should
            contain two fields: training and testing, to allow for different values depending
            on training or evaluation
        nms_thresh (float): NMS threshold used for postprocessing the RPN proposals

    """
eellison's avatar
eellison committed
129
130
131
132
133
134
135
    __annotations__ = {
        'box_coder': det_utils.BoxCoder,
        'proposal_matcher': det_utils.Matcher,
        'fg_bg_sampler': det_utils.BalancedPositiveNegativeSampler,
        'pre_nms_top_n': Dict[str, int],
        'post_nms_top_n': Dict[str, int],
    }
136
137
138
139
140
141
142
143

    def __init__(self,
                 anchor_generator,
                 head,
                 #
                 fg_iou_thresh, bg_iou_thresh,
                 batch_size_per_image, positive_fraction,
                 #
144
                 pre_nms_top_n, post_nms_top_n, nms_thresh, score_thresh=0.0):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        super(RegionProposalNetwork, self).__init__()
        self.anchor_generator = anchor_generator
        self.head = head
        self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        # used during training
        self.box_similarity = box_ops.box_iou

        self.proposal_matcher = det_utils.Matcher(
            fg_iou_thresh,
            bg_iou_thresh,
            allow_low_quality_matches=True,
        )

        self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(
            batch_size_per_image, positive_fraction
        )
        # used during testing
        self._pre_nms_top_n = pre_nms_top_n
        self._post_nms_top_n = post_nms_top_n
        self.nms_thresh = nms_thresh
166
        self.score_thresh = score_thresh
167
        self.min_size = 1e-3
168
169
170
171
172
173
174
175
176
177
178
179

    def pre_nms_top_n(self):
        if self.training:
            return self._pre_nms_top_n['training']
        return self._pre_nms_top_n['testing']

    def post_nms_top_n(self):
        if self.training:
            return self._post_nms_top_n['training']
        return self._post_nms_top_n['testing']

    def assign_targets_to_anchors(self, anchors, targets):
180
        # type: (List[Tensor], List[Dict[str, Tensor]]) -> Tuple[List[Tensor], List[Tensor]]
181
182
183
184
        labels = []
        matched_gt_boxes = []
        for anchors_per_image, targets_per_image in zip(anchors, targets):
            gt_boxes = targets_per_image["boxes"]
185
186
187
188
189
190
191

            if gt_boxes.numel() == 0:
                # Background image (negative example)
                device = anchors_per_image.device
                matched_gt_boxes_per_image = torch.zeros(anchors_per_image.shape, dtype=torch.float32, device=device)
                labels_per_image = torch.zeros((anchors_per_image.shape[0],), dtype=torch.float32, device=device)
            else:
192
                match_quality_matrix = self.box_similarity(gt_boxes, anchors_per_image)
193
194
195
196
197
198
199
200
201
202
203
204
                matched_idxs = self.proposal_matcher(match_quality_matrix)
                # get the targets corresponding GT for each proposal
                # NB: need to clamp the indices because we can have a single
                # GT in the image, and matched_idxs can be -2, which goes
                # out of bounds
                matched_gt_boxes_per_image = gt_boxes[matched_idxs.clamp(min=0)]

                labels_per_image = matched_idxs >= 0
                labels_per_image = labels_per_image.to(dtype=torch.float32)

                # Background (negative examples)
                bg_indices = matched_idxs == self.proposal_matcher.BELOW_LOW_THRESHOLD
205
                labels_per_image[bg_indices] = 0.0
206
207
208

                # discard indices that are between thresholds
                inds_to_discard = matched_idxs == self.proposal_matcher.BETWEEN_THRESHOLDS
209
                labels_per_image[inds_to_discard] = -1.0
210
211
212
213
214
215

            labels.append(labels_per_image)
            matched_gt_boxes.append(matched_gt_boxes_per_image)
        return labels, matched_gt_boxes

    def _get_top_n_idx(self, objectness, num_anchors_per_level):
216
        # type: (Tensor, List[int]) -> Tensor
217
218
219
        r = []
        offset = 0
        for ob in objectness.split(num_anchors_per_level, 1):
220
            if torchvision._is_tracing():
eellison's avatar
eellison committed
221
                num_anchors, pre_nms_top_n = _onnx_get_num_anchors_and_pre_nms_top_n(ob, self.pre_nms_top_n())
222
223
            else:
                num_anchors = ob.shape[1]
eellison's avatar
eellison committed
224
                pre_nms_top_n = min(self.pre_nms_top_n(), num_anchors)
225
226
227
228
229
230
            _, top_n_idx = ob.topk(pre_nms_top_n, dim=1)
            r.append(top_n_idx + offset)
            offset += num_anchors
        return torch.cat(r, dim=1)

    def filter_proposals(self, proposals, objectness, image_shapes, num_anchors_per_level):
231
        # type: (Tensor, Tensor, List[Tuple[int, int]], List[int]) -> Tuple[List[Tensor], List[Tensor]]
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        num_images = proposals.shape[0]
        device = proposals.device
        # do not backprop throught objectness
        objectness = objectness.detach()
        objectness = objectness.reshape(num_images, -1)

        levels = [
            torch.full((n,), idx, dtype=torch.int64, device=device)
            for idx, n in enumerate(num_anchors_per_level)
        ]
        levels = torch.cat(levels, 0)
        levels = levels.reshape(1, -1).expand_as(objectness)

        # select top_n boxes independently per level before applying nms
        top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)
eellison's avatar
eellison committed
247
248
249
250

        image_range = torch.arange(num_images, device=device)
        batch_idx = image_range[:, None]

251
252
253
254
        objectness = objectness[batch_idx, top_n_idx]
        levels = levels[batch_idx, top_n_idx]
        proposals = proposals[batch_idx, top_n_idx]

255
        objectness_prob = torch.sigmoid(objectness)
256

257
258
        final_boxes = []
        final_scores = []
259
        for boxes, scores, lvl, img_shape in zip(proposals, objectness_prob, levels, image_shapes):
260
            boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
261
262

            # remove small boxes
263
264
            keep = box_ops.remove_small_boxes(boxes, self.min_size)
            boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
265
266
267
268
269
270

            # remove low scoring boxes
            # use >= for Backwards compatibility
            keep = torch.where(scores >= self.score_thresh)[0]
            boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]

271
272
            # non-maximum suppression, independently done per level
            keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)
273

274
            # keep only topk scoring predictions
eellison's avatar
eellison committed
275
            keep = keep[:self.post_nms_top_n()]
276
            boxes, scores = boxes[keep], scores[keep]
277

278
279
280
281
282
            final_boxes.append(boxes)
            final_scores.append(scores)
        return final_boxes, final_scores

    def compute_loss(self, objectness, pred_bbox_deltas, labels, regression_targets):
283
        # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
284
        """
285
        Args:
286
287
288
289
            objectness (Tensor)
            pred_bbox_deltas (Tensor)
            labels (List[Tensor])
            regression_targets (List[Tensor])
290
291
292

        Returns:
            objectness_loss (Tensor)
lambdaflow's avatar
lambdaflow committed
293
            box_loss (Tensor)
294
295
296
        """

        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
297
298
        sampled_pos_inds = torch.where(torch.cat(sampled_pos_inds, dim=0))[0]
        sampled_neg_inds = torch.where(torch.cat(sampled_neg_inds, dim=0))[0]
299
300
301
302
303
304
305
306

        sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)

        objectness = objectness.flatten()

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)

307
        box_loss = F.smooth_l1_loss(
308
309
            pred_bbox_deltas[sampled_pos_inds],
            regression_targets[sampled_pos_inds],
310
            beta=1 / 9,
311
            reduction='sum',
312
313
314
315
316
317
318
319
        ) / (sampled_inds.numel())

        objectness_loss = F.binary_cross_entropy_with_logits(
            objectness[sampled_inds], labels[sampled_inds]
        )

        return objectness_loss, box_loss

320
321
322
323
324
325
    def forward(self,
                images,       # type: ImageList
                features,     # type: Dict[str, Tensor]
                targets=None  # type: Optional[List[Dict[str, Tensor]]]
                ):
        # type: (...) -> Tuple[List[Tensor], Dict[str, Tensor]]
326
        """
327
        Args:
328
            images (ImageList): images for which we want to compute the predictions
Jackson Liu's avatar
Jackson Liu committed
329
            features (OrderedDict[Tensor]): features computed from the images that are
330
331
                used for computing the predictions. Each tensor in the list
                correspond to different feature levels
lambdaflow's avatar
lambdaflow committed
332
            targets (List[Dict[Tensor]]): ground-truth boxes present in the image (optional).
333
334
                If provided, each element in the dict should contain a field `boxes`,
                with the locations of the ground-truth boxes.
335
336

        Returns:
337
            boxes (List[Tensor]): the predicted boxes from the RPN, one Tensor per
338
                image.
339
            losses (Dict[Tensor]): the losses for the model during training. During
340
341
342
343
344
345
346
347
                testing, it is an empty dict.
        """
        # RPN uses all feature maps that are available
        features = list(features.values())
        objectness, pred_bbox_deltas = self.head(features)
        anchors = self.anchor_generator(images, features)

        num_images = len(anchors)
348
349
        num_anchors_per_level_shape_tensors = [o[0].shape for o in objectness]
        num_anchors_per_level = [s[0] * s[1] * s[2] for s in num_anchors_per_level_shape_tensors]
350
351
352
353
354
355
356
357
358
359
360
        objectness, pred_bbox_deltas = \
            concat_box_prediction_layers(objectness, pred_bbox_deltas)
        # apply pred_bbox_deltas to anchors to obtain the decoded proposals
        # note that we detach the deltas because Faster R-CNN do not backprop through
        # the proposals
        proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
        proposals = proposals.view(num_images, -1, 4)
        boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)

        losses = {}
        if self.training:
eellison's avatar
eellison committed
361
            assert targets is not None
362
363
364
365
366
367
368
369
370
            labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets)
            regression_targets = self.box_coder.encode(matched_gt_boxes, anchors)
            loss_objectness, loss_rpn_box_reg = self.compute_loss(
                objectness, pred_bbox_deltas, labels, regression_targets)
            losses = {
                "loss_objectness": loss_objectness,
                "loss_rpn_box_reg": loss_rpn_box_reg,
            }
        return boxes, losses