utils.py 3.99 KB
Newer Older
1
2
import torch
import math
3
irange = range
4

5

6
def make_grid(tensor, nrow=8, padding=2,
7
              normalize=False, range=None, scale_each=False, pad_value=0):
8
    """Make a grid of images.
9

10
11
12
13
14
15
16
17
18
19
20
21
22
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
        nrows (int, optional): Number of rows in grid. Final grid size is
            (B / nrow, nrow). Default is 8.
        normalize (bool, optional): If True, shift the image to the range (0, 1),
            by subtracting the minimum and dividing by the maximum pixel value.
        range (tuple, optional): tuple (min, max) where min and max are numbers,
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
        scale_each(bool, optional): If True, scale each image in the batch of
            images separately rather than the (min, max) over all images.
        pad_value(float, optional): Value for the padded pixels.
23

24
25
    Example:
        See this notebook `here <https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91>`_
26

27
    """
28
    # if list of tensors, convert to a 4D mini-batch Tensor
29
30
31
    if isinstance(tensor, list):
        tensorlist = tensor
        numImages = len(tensorlist)
Adam Paszke's avatar
Adam Paszke committed
32
        size = torch.Size(torch.Size([numImages]) + tensorlist[0].size())
33
        tensor = tensorlist[0].new(size)
34
        for i in irange(numImages):
35
            tensor[i].copy_(tensorlist[i])
36

37
    if tensor.dim() == 2:  # single image H x W
Adam Lerer's avatar
Adam Lerer committed
38
        tensor = tensor.view(1, tensor.size(0), tensor.size(1))
39
    if tensor.dim() == 3:  # single image
40
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
41
            tensor = torch.cat((tensor, tensor, tensor), 0)
42
        return tensor
43
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
44
        tensor = torch.cat((tensor, tensor, tensor), 1)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

    if normalize is True:
        if range is not None:
            assert isinstance(range, tuple), \
                "range has to be a tuple (min, max) if specified. min and max are numbers"

        def norm_ip(img, min, max):
            img.clamp_(min=min, max=max)
            img.add_(-min).div_(max - min)

        def norm_range(t, range):
            if range is not None:
                norm_ip(t, range[0], range[1])
            else:
                norm_ip(t, t.min(), t.max())

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
                norm_range(t, range)
        else:
            norm_range(tensor, range)

67
68
69
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
70
    ymaps = int(math.ceil(float(nmaps) / xmaps))
71
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
72
    grid = tensor.new(3, height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding // 2).fill_(pad_value)
73
    k = 0
74
75
    for y in irange(ymaps):
        for x in irange(xmaps):
76
77
            if k >= nmaps:
                break
78
79
            grid.narrow(1, y * height + 1 + padding // 2, height - padding)\
                .narrow(2, x * width + 1 + padding // 2, width - padding)\
80
81
82
83
84
                .copy_(tensor[k])
            k = k + 1
    return grid


85
def save_image(tensor, filename, nrow=8, padding=2,
86
               normalize=False, range=None, scale_each=False, pad_value=0):
87
88
89
90
91
92
    """Save a given Tensor into an image file.

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
        **kwargs: Other arguments are documented in ``make_grid``.
93
94
95
    """
    from PIL import Image
    tensor = tensor.cpu()
96
    grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value,
97
                     normalize=normalize, range=range, scale_each=scale_each)
98
    ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy()
99
100
    im = Image.fromarray(ndarr)
    im.save(filename)