celeba.py 7.54 KB
Newer Older
1
from functools import partial
2
3
4
import torch
import os
import PIL
5
from .vision import VisionDataset
6
from .utils import download_file_from_google_drive, check_integrity, verify_str_arg
7
8


9
class CelebA(VisionDataset):
10
11
12
13
    """`Large-scale CelebFaces Attributes (CelebA) Dataset <http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html>`_ Dataset.

    Args:
        root (string): Root directory where images are downloaded to.
14
        split (string): One of {'train', 'valid', 'test', 'all'}.
15
16
17
18
19
20
21
22
23
            Accordingly dataset is selected.
        target_type (string or list, optional): Type of target to use, ``attr``, ``identity``, ``bbox``,
            or ``landmarks``. Can also be a list to output a tuple with all specified target types.
            The targets represent:
                ``attr`` (np.array shape=(40,) dtype=int): binary (0, 1) labels for attributes
                ``identity`` (int): label for each person (data points with the same identity are the same person)
                ``bbox`` (np.array shape=(4,) dtype=int): bounding box (x, y, width, height)
                ``landmarks`` (np.array shape=(10,) dtype=int): landmark points (lefteye_x, lefteye_y, righteye_x,
                    righteye_y, nose_x, nose_y, leftmouth_x, leftmouth_y, rightmouth_x, rightmouth_y)
24
            Defaults to ``attr``. If empty, ``None`` will be returned as target.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.ToTensor``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    base_folder = "celeba"
    # There currently does not appear to be a easy way to extract 7z in python (without introducing additional
    # dependencies). The "in-the-wild" (not aligned+cropped) images are only in 7z, so they are not available
    # right now.
    file_list = [
        # File ID                         MD5 Hash                            Filename
        ("0B7EVK8r0v71pZjFTYXZWM3FlRnM", "00d2c5bc6d35e252742224ab0c1e8fcb", "img_align_celeba.zip"),
        # ("0B7EVK8r0v71pbWNEUjJKdDQ3dGc", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_align_celeba_png.7z"),
        # ("0B7EVK8r0v71peklHb0pGdDl6R28", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_celeba.7z"),
        ("0B7EVK8r0v71pblRyaVFSWGxPY0U", "75e246fa4810816ffd6ee81facbd244c", "list_attr_celeba.txt"),
        ("1_ee_0u7vcNLOfNLegJRHmolfH5ICW-XS", "32bd1bd63d3c78cd57e08160ec5ed1e2", "identity_CelebA.txt"),
        ("0B7EVK8r0v71pbThiMVRxWXZ4dU0", "00566efa6fedff7a56946cd1c10f1c16", "list_bbox_celeba.txt"),
        ("0B7EVK8r0v71pd0FJY3Blby1HUTQ", "cc24ecafdb5b50baae59b03474781f8c", "list_landmarks_align_celeba.txt"),
        # ("0B7EVK8r0v71pTzJIdlJWdHczRlU", "063ee6ddb681f96bc9ca28c6febb9d1a", "list_landmarks_celeba.txt"),
        ("0B7EVK8r0v71pY0NSMzRuSXJEVkk", "d32c9cbf5e040fd4025c592c306e6668", "list_eval_partition.txt"),
    ]

51
52
    def __init__(self, root, split="train", target_type="attr", transform=None,
                 target_transform=None, download=False):
53
        import pandas
54
55
        super(CelebA, self).__init__(root, transform=transform,
                                     target_transform=target_transform)
56
57
58
59
60
61
        self.split = split
        if isinstance(target_type, list):
            self.target_type = target_type
        else:
            self.target_type = [target_type]

62
63
64
        if not self.target_type and self.target_transform is not None:
            raise RuntimeError('target_transform is specified but target_type is empty')

65
66
67
68
69
70
71
        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

72
73
74
75
76
77
78
79
        split_map = {
            "train": 0,
            "valid": 1,
            "test": 2,
            "all": None,
        }
        split = split_map[verify_str_arg(split.lower(), "split",
                                         ("train", "valid", "test", "all"))]
80

81
82
83
84
85
86
        fn = partial(os.path.join, self.root, self.base_folder)
        splits = pandas.read_csv(fn("list_eval_partition.txt"), delim_whitespace=True, header=None, index_col=0)
        identity = pandas.read_csv(fn("identity_CelebA.txt"), delim_whitespace=True, header=None, index_col=0)
        bbox = pandas.read_csv(fn("list_bbox_celeba.txt"), delim_whitespace=True, header=1, index_col=0)
        landmarks_align = pandas.read_csv(fn("list_landmarks_align_celeba.txt"), delim_whitespace=True, header=1)
        attr = pandas.read_csv(fn("list_attr_celeba.txt"), delim_whitespace=True, header=1)
87

88
        mask = slice(None) if split is None else (splits[1] == split)
89
90

        self.filename = splits[mask].index.values
91
92
93
94
        self.identity = torch.as_tensor(identity[mask].values)
        self.bbox = torch.as_tensor(bbox[mask].values)
        self.landmarks_align = torch.as_tensor(landmarks_align[mask].values)
        self.attr = torch.as_tensor(attr[mask].values)
95
        self.attr = (self.attr + 1) // 2  # map from {-1, 1} to {0, 1}
96
        self.attr_names = list(attr.columns)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def _check_integrity(self):
        for (_, md5, filename) in self.file_list:
            fpath = os.path.join(self.root, self.base_folder, filename)
            _, ext = os.path.splitext(filename)
            # Allow original archive to be deleted (zip and 7z)
            # Only need the extracted images
            if ext not in [".zip", ".7z"] and not check_integrity(fpath, md5):
                return False

        # Should check a hash of the images
        return os.path.isdir(os.path.join(self.root, self.base_folder, "img_align_celeba"))

    def download(self):
        import zipfile

        if self._check_integrity():
            print('Files already downloaded and verified')
            return

        for (file_id, md5, filename) in self.file_list:
            download_file_from_google_drive(file_id, os.path.join(self.root, self.base_folder), filename, md5)

        with zipfile.ZipFile(os.path.join(self.root, self.base_folder, "img_align_celeba.zip"), "r") as f:
            f.extractall(os.path.join(self.root, self.base_folder))

    def __getitem__(self, index):
        X = PIL.Image.open(os.path.join(self.root, self.base_folder, "img_align_celeba", self.filename[index]))

        target = []
        for t in self.target_type:
            if t == "attr":
                target.append(self.attr[index, :])
            elif t == "identity":
                target.append(self.identity[index, 0])
            elif t == "bbox":
                target.append(self.bbox[index, :])
            elif t == "landmarks":
                target.append(self.landmarks_align[index, :])
            else:
137
                # TODO: refactor with utils.verify_str_arg
138
139
140
141
142
                raise ValueError("Target type \"{}\" is not recognized.".format(t))

        if self.transform is not None:
            X = self.transform(X)

143
144
145
146
147
148
149
        if target:
            target = tuple(target) if len(target) > 1 else target[0]

            if self.target_transform is not None:
                target = self.target_transform(target)
        else:
            target = None
150
151
152
153
154
155

        return X, target

    def __len__(self):
        return len(self.attr)

156
157
158
    def extra_repr(self):
        lines = ["Target type: {target_type}", "Split: {split}"]
        return '\n'.join(lines).format(**self.__dict__)