test_onnx.py 4.63 KB
Newer Older
1
2
3
import io
import torch
from torchvision import ops
4
from torchvision.models.detection.transform import GeneralizedRCNNTransform
5

6
7
from collections import OrderedDict

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None

import unittest


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

23
    def run_model(self, model, inputs_list):
24
25
26
        model.eval()

        onnx_io = io.BytesIO()
27
28
        # export to onnx with the first input
        torch.onnx.export(model, inputs_list[0], onnx_io, do_constant_folding=True, opset_version=10)
29
30

        # validate the exported model with onnx runtime
31
32
33
34
35
36
37
38
39
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
            self.ort_validate(onnx_io, test_inputs, test_ouputs)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

    def ort_validate(self, onnx_io, inputs, outputs):

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)

        for i in range(0, len(outputs)):
            torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)

    def test_nms(self):
        boxes = torch.rand(5, 4)
        boxes[:, 2:] += torch.rand(5, 2)
        scores = torch.randn(5)

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

72
        self.run_model(Module(), [(boxes, scores)])
73

74
    def test_roi_align(self):
75
76
77
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
78
        self.run_model(model, [(x, single_roi)])
79

80
    def test_roi_pool(self):
81
82
83
84
85
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        self.run_model(model, [(x, rois)])

    @unittest.skip("Disable test until Resize opset 11 is implemented in ONNX Runtime")
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
                min_size = 800
                max_size = 1333
                image_mean = [0.485, 0.456, 0.406]
                image_std = [0.229, 0.224, 0.225]
                self_module.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

        input = [torch.rand(3, 800, 1280), torch.rand(3, 800, 800)]
        input_test = [torch.rand(3, 800, 1280), torch.rand(3, 800, 800)]
        self.run_model(TransformModule(), [input, input_test])
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

132
133
134

if __name__ == '__main__':
    unittest.main()