train.py 8.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn
import torchvision
from torchvision import transforms

import utils


def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, print_freq):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    header = 'Epoch: [{}]'.format(epoch)
    for image, target in metric_logger.log_every(data_loader, print_freq, header):
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
        batch_size = image.shape[0]
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
        metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)


def evaluate(model, criterion, data_loader, device):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    with torch.no_grad():
        for image, target in metric_logger.log_every(data_loader, 100, header):
            image = image.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            output = model(image)
            loss = criterion(output, target)

            acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
            # FIXME need to take into account that the datasets
            # could have been padded in distributed setup
            batch_size = image.shape[0]
            metric_logger.update(loss=loss.item())
            metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
            metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

    print(' * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
          .format(top1=metric_logger.acc1, top5=metric_logger.acc5))
    return metric_logger.acc1.global_avg


def main(args):
    args.gpu = args.local_rank

    if args.distributed:
        args.rank = int(os.environ["RANK"])
        torch.cuda.set_device(args.gpu)
        args.dist_backend = 'nccl'
        dist_url = 'env://'
        print('| distributed init (rank {}): {}'.format(
            args.rank, dist_url), flush=True)
        torch.distributed.init_process_group(backend=args.dist_backend, init_method=dist_url)
        utils.setup_for_distributed(args.rank == 0)

    device = torch.device(args.device)

    torch.backends.cudnn.benchmark = True

    # Data loading code
    print("Loading data")
    traindir = os.path.join(args.data_path, 'train')
    valdir = os.path.join(args.data_path, 'val')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    print("Loading training data")
    st = time.time()
    scale = (0.08, 1.0)
    if args.model == 'mobilenet_v2':
        scale = (0.2, 1.0)
    dataset = torchvision.datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224, scale=scale),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))
    print("Took", time.time() - st)

    print("Loading validation data")
    dataset_test = torchvision.datasets.ImageFolder(
        valdir,
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ]))

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers, pin_memory=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=args.batch_size,
        sampler=test_sampler, num_workers=args.workers, pin_memory=True)

    print("Creating model")
    model = torchvision.models.__dict__[args.model]()
    model.to(device)
    if args.distributed:
        model = torch.nn.utils.convert_sync_batchnorm(model)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    criterion = nn.CrossEntropyLoss()

    optimizer = torch.optim.SGD(
        model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

    # if using mobilenet, step_size=2 and gamma=0.94
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)

    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])

    if args.test_only:
        evaluate(model, criterion, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        lr_scheduler.step()
        train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq)
        evaluate(model, criterion, data_loader_test, device=device)
        if args.output_dir:
            utils.save_on_master({
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
                'args': args},
                os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description='PyTorch Classification Training')

    parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', help='dataset')
    parser.add_argument('--model', default='resnet18', help='model')
    parser.add_argument('--device', default='cuda', help='device')
    parser.add_argument('-b', '--batch-size', default=32, type=int)
    parser.add_argument('--epochs', default=90, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
                        help='number of data loading workers (default: 16)')
    parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs')
    parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
    parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument('--local_rank', default=0, type=int, help='print frequency')

    args = parser.parse_args()
    print(args)

    if args.output_dir:
        utils.mkdir(args.output_dir)

    num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1

    main(args)