_misc.py 10.6 KB
Newer Older
1
import math
2
from typing import List, Optional, Union
3

4
import PIL.Image
5
import torch
6
from torch.nn.functional import conv2d, pad as torch_pad
7

8
from torchvision import datapoints
9
from torchvision.transforms._functional_tensor import _max_value
10
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
11

12
13
from torchvision.utils import _log_api_usage_once

14
from ._utils import is_simple_tensor
15

16
17
18
19
20
21
22
23

def normalize_image_tensor(
    image: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False
) -> torch.Tensor:
    if not image.is_floating_point():
        raise TypeError(f"Input tensor should be a float tensor. Got {image.dtype}.")

    if image.ndim < 3:
24
        raise ValueError(f"Expected tensor to be a tensor image of size (..., C, H, W). Got {image.shape}.")
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    if isinstance(std, (tuple, list)):
        divzero = not all(std)
    elif isinstance(std, (int, float)):
        divzero = std == 0
    else:
        divzero = False
    if divzero:
        raise ValueError("std evaluated to zero, leading to division by zero.")

    dtype = image.dtype
    device = image.device
    mean = torch.as_tensor(mean, dtype=dtype, device=device)
    std = torch.as_tensor(std, dtype=dtype, device=device)
    if mean.ndim == 1:
        mean = mean.view(-1, 1, 1)
    if std.ndim == 1:
        std = std.view(-1, 1, 1)

    if inplace:
        image = image.sub_(mean)
    else:
        image = image.sub(mean)

    return image.div_(std)
50

51

52
53
54
55
def normalize_video(video: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
    return normalize_image_tensor(video, mean, std, inplace=inplace)


56
def normalize(
Philip Meier's avatar
Philip Meier committed
57
    inpt: Union[datapoints._TensorImageTypeJIT, datapoints._TensorVideoTypeJIT],
58
59
60
    mean: List[float],
    std: List[float],
    inplace: bool = False,
61
) -> torch.Tensor:
62
    if not torch.jit.is_scripting():
63
        _log_api_usage_once(normalize)
64
65
66
67
68
69
70
71
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
        return normalize_image_tensor(inpt, mean=mean, std=std, inplace=inplace)
    elif isinstance(inpt, (datapoints.Image, datapoints.Video)):
        return inpt.normalize(mean=mean, std=std, inplace=inplace)
    else:
        raise TypeError(
            f"Input can either be a plain tensor or an `Image` or `Video` datapoint, " f"but got {type(inpt)} instead."
        )
72
73


74
def _get_gaussian_kernel1d(kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
75
    lim = (kernel_size - 1) / (2.0 * math.sqrt(2.0) * sigma)
76
    x = torch.linspace(-lim, lim, steps=kernel_size, dtype=dtype, device=device)
77
    kernel1d = torch.softmax(x.pow_(2).neg_(), dim=0)
78
79
80
81
82
83
    return kernel1d


def _get_gaussian_kernel2d(
    kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
84
85
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0], dtype, device)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1], dtype, device)
86
87
88
89
    kernel2d = kernel1d_y.unsqueeze(-1) * kernel1d_x
    return kernel2d


90
def gaussian_blur_image_tensor(
91
    image: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
92
) -> torch.Tensor:
93
    # TODO: consider deprecating integers from sigma on the future
94
95
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
96
    elif len(kernel_size) != 2:
97
98
99
100
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
101

102
103
    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]
104
105
106
107
108
109
110
111
112
113
114
115
116
    else:
        if isinstance(sigma, (list, tuple)):
            length = len(sigma)
            if length == 1:
                s = float(sigma[0])
                sigma = [s, s]
            elif length != 2:
                raise ValueError(f"If sigma is a sequence, its length should be 2. Got {length}")
        elif isinstance(sigma, (int, float)):
            s = float(sigma)
            sigma = [s, s]
        else:
            raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
117
118
119
    for s in sigma:
        if s <= 0.0:
            raise ValueError(f"sigma should have positive values. Got {sigma}")
120

121
122
123
    if image.numel() == 0:
        return image

124
    dtype = image.dtype
125
    shape = image.shape
126
127
128
129
    ndim = image.ndim
    if ndim == 3:
        image = image.unsqueeze(dim=0)
    elif ndim > 4:
130
        image = image.reshape((-1,) + shape[-3:])
131

132
133
134
    fp = torch.is_floating_point(image)
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype if fp else torch.float32, device=image.device)
    kernel = kernel.expand(shape[-3], 1, kernel.shape[0], kernel.shape[1])
135

136
    output = image if fp else image.to(dtype=torch.float32)
137
138
139

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
140
141
    output = torch_pad(output, padding, mode="reflect")
    output = conv2d(output, kernel, groups=shape[-3])
142

143
144
145
    if ndim == 3:
        output = output.squeeze(dim=0)
    elif ndim > 4:
146
        output = output.reshape(shape)
147

148
149
150
    if not fp:
        output = output.round_().to(dtype=dtype)

151
    return output
152
153


154
@torch.jit.unused
155
def gaussian_blur_image_pil(
156
    image: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
157
) -> PIL.Image.Image:
158
    t_img = pil_to_tensor(image)
159
    output = gaussian_blur_image_tensor(t_img, kernel_size=kernel_size, sigma=sigma)
160
    return to_pil_image(output, mode=image.mode)
161
162


163
164
165
def gaussian_blur_video(
    video: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
166
    return gaussian_blur_image_tensor(video, kernel_size, sigma)
167
168


169
def gaussian_blur(
Philip Meier's avatar
Philip Meier committed
170
171
    inpt: datapoints._InputTypeJIT, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> datapoints._InputTypeJIT:
172
173
174
    if not torch.jit.is_scripting():
        _log_api_usage_once(gaussian_blur)

175
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
176
        return gaussian_blur_image_tensor(inpt, kernel_size=kernel_size, sigma=sigma)
177
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
178
        return inpt.gaussian_blur(kernel_size=kernel_size, sigma=sigma)
179
    elif isinstance(inpt, PIL.Image.Image):
180
        return gaussian_blur_image_pil(inpt, kernel_size=kernel_size, sigma=sigma)
181
182
    else:
        raise TypeError(
183
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
184
185
            f"but got {type(inpt)} instead."
        )
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279


def _num_value_bits(dtype: torch.dtype) -> int:
    if dtype == torch.uint8:
        return 8
    elif dtype == torch.int8:
        return 7
    elif dtype == torch.int16:
        return 15
    elif dtype == torch.int32:
        return 31
    elif dtype == torch.int64:
        return 63
    else:
        raise TypeError(f"Number of value bits is only defined for integer dtypes, but got {dtype}.")


def to_dtype_image_tensor(image: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:

    if image.dtype == dtype:
        return image
    elif not scale:
        return image.to(dtype)

    float_input = image.is_floating_point()
    if torch.jit.is_scripting():
        # TODO: remove this branch as soon as `dtype.is_floating_point` is supported by JIT
        float_output = torch.tensor(0, dtype=dtype).is_floating_point()
    else:
        float_output = dtype.is_floating_point

    if float_input:
        # float to float
        if float_output:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            raise RuntimeError(f"The conversion from {image.dtype} to {dtype} cannot be performed safely.")

        # For data in the range `[0.0, 1.0]`, just multiplying by the maximum value of the integer range and converting
        # to the integer dtype  is not sufficient. For example, `torch.rand(...).mul(255).to(torch.uint8)` will only
        # be `255` if the input is exactly `1.0`. See https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # for a detailed analysis.
        # To mitigate this, we could round before we convert to the integer dtype, but this is an extra operation.
        # Instead, we can also multiply by the maximum value plus something close to `1`. See
        # https://github.com/pytorch/vision/pull/2078#issuecomment-613524965 for details.
        eps = 1e-3
        max_value = float(_max_value(dtype))
        # We need to scale first since the conversion would otherwise turn the input range `[0.0, 1.0]` into the
        # discrete set `{0, 1}`.
        return image.mul(max_value + 1.0 - eps).to(dtype)
    else:
        # int to float
        if float_output:
            return image.to(dtype).mul_(1.0 / _max_value(image.dtype))

        # int to int
        num_value_bits_input = _num_value_bits(image.dtype)
        num_value_bits_output = _num_value_bits(dtype)

        if num_value_bits_input > num_value_bits_output:
            return image.bitwise_right_shift(num_value_bits_input - num_value_bits_output).to(dtype)
        else:
            return image.to(dtype).bitwise_left_shift_(num_value_bits_output - num_value_bits_input)


# We encourage users to use to_dtype() instead but we keep this for BC
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
    return to_dtype_image_tensor(image, dtype=dtype, scale=True)


def to_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
    return to_dtype_image_tensor(video, dtype, scale=scale)


def to_dtype(inpt: datapoints._InputTypeJIT, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
    if not torch.jit.is_scripting():
        _log_api_usage_once(to_dtype)

    if torch.jit.is_scripting() or is_simple_tensor(inpt):
        return to_dtype_image_tensor(inpt, dtype, scale=scale)
    elif isinstance(inpt, datapoints.Image):
        output = to_dtype_image_tensor(inpt.as_subclass(torch.Tensor), dtype, scale=scale)
        return datapoints.Image.wrap_like(inpt, output)
    elif isinstance(inpt, datapoints.Video):
        output = to_dtype_video(inpt.as_subclass(torch.Tensor), dtype, scale=scale)
        return datapoints.Video.wrap_like(inpt, output)
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
        return inpt.to(dtype)
    else:
        raise TypeError(f"Input can either be a plain tensor or a datapoint, but got {type(inpt)} instead.")