roi_align.py 3.7 KB
Newer Older
1
import torch
2
from torch import nn, Tensor
3
4

from torch.nn.modules.utils import _pair
5
from torch.jit.annotations import BroadcastingList2
6

7
from torchvision.extension import _assert_has_ops
8
from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape
9
10


11
12
13
14
15
16
17
18
def roi_align(
    input: Tensor,
    boxes: Tensor,
    output_size: BroadcastingList2[int],
    spatial_scale: float = 1.0,
    sampling_ratio: int = -1,
    aligned: bool = False,
) -> Tensor:
19
    """
20
    Performs Region of Interest (RoI) Align operator with average pooling, as described in Mask R-CNN.
21

22
    Args:
23
24
        input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
            contains ``C`` feature maps of dimensions ``H x W``.
25
            If the tensor is quantized, we expect a batch size of ``N == 1``.
26
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
27
28
            format where the regions will be taken from.
            The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
29
30
31
32
33
34
            If a single Tensor is passed, then the first column should
            contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
            If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
            in the batch.
        output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling
            is performed, as (height, width).
35
36
37
38
        spatial_scale (float): a scaling factor that maps the input coordinates to
            the box coordinates. Default: 1.0
        sampling_ratio (int): number of sampling points in the interpolation grid
            used to compute the output value of each pooled output bin. If > 0,
39
            then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If
40
            <= 0, then an adaptive number of grid points are used (computed as
41
            ``ceil(roi_width / output_width)``, and likewise for height). Default: -1
AhnDW's avatar
AhnDW committed
42
        aligned (bool): If False, use the legacy implementation.
43
44
            If True, pixel shift the box coordinates it by -0.5 for a better alignment with the two
            neighboring pixel indices. This version is used in Detectron2
45
46

    Returns:
47
        Tensor[K, C, output_size[0], output_size[1]]: The pooled RoIs.
48
    """
49
    _assert_has_ops()
50
    check_roi_boxes_shape(boxes)
51
    rois = boxes
52
    output_size = _pair(output_size)
53
54
    if not isinstance(rois, torch.Tensor):
        rois = convert_boxes_to_roi_format(rois)
55
56
    return torch.ops.torchvision.roi_align(input, rois, spatial_scale,
                                           output_size[0], output_size[1],
AhnDW's avatar
AhnDW committed
57
                                           sampling_ratio, aligned)
58
59
60
61


class RoIAlign(nn.Module):
    """
62
    See :func:`roi_align`.
63
    """
64
65
66
67
68
69
70
    def __init__(
        self,
        output_size: BroadcastingList2[int],
        spatial_scale: float,
        sampling_ratio: int,
        aligned: bool = False,
    ):
71
72
73
74
        super(RoIAlign, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale
        self.sampling_ratio = sampling_ratio
AhnDW's avatar
AhnDW committed
75
        self.aligned = aligned
76

77
    def forward(self, input: Tensor, rois: Tensor) -> Tensor:
AhnDW's avatar
AhnDW committed
78
        return roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned)
79

80
    def __repr__(self) -> str:
81
82
83
84
        tmpstr = self.__class__.__name__ + '('
        tmpstr += 'output_size=' + str(self.output_size)
        tmpstr += ', spatial_scale=' + str(self.spatial_scale)
        tmpstr += ', sampling_ratio=' + str(self.sampling_ratio)
AhnDW's avatar
AhnDW committed
85
        tmpstr += ', aligned=' + str(self.aligned)
86
87
        tmpstr += ')'
        return tmpstr