inception.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo


__all__ = ['Inception3', 'inception_v3']


model_urls = {
    # Inception v3 ported from TensorFlow
    'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',
}


def inception_v3(pretrained=False, **kwargs):
    r"""Inception v3 model architecture from
    `"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.

20
21
    .. note::
        **Important**: In contrast to the other models the inception_v3 expects tensors with a size of
22
        N x 3 x 299 x 299, so ensure your images are sized accordingly.
23

24
25
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
26
        transform_input (bool): If True, preprocesses the input according to the method with which it
27
            was trained on ImageNet. Default: *False*
28
29
30
31
32
33
34
35
36
37
38
39
    """
    if pretrained:
        if 'transform_input' not in kwargs:
            kwargs['transform_input'] = True
        model = Inception3(**kwargs)
        model.load_state_dict(model_zoo.load_url(model_urls['inception_v3_google']))
        return model

    return Inception3(**kwargs)


class Inception3(nn.Module):
soumith's avatar
soumith committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False):
        super(Inception3, self).__init__()
        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
        self.Mixed_5b = InceptionA(192, pool_features=32)
        self.Mixed_5c = InceptionA(256, pool_features=64)
        self.Mixed_5d = InceptionA(288, pool_features=64)
        self.Mixed_6a = InceptionB(288)
        self.Mixed_6b = InceptionC(768, channels_7x7=128)
        self.Mixed_6c = InceptionC(768, channels_7x7=160)
        self.Mixed_6d = InceptionC(768, channels_7x7=160)
        self.Mixed_6e = InceptionC(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = InceptionAux(768, num_classes)
        self.Mixed_7a = InceptionD(768)
        self.Mixed_7b = InceptionE(1280)
        self.Mixed_7c = InceptionE(2048)
        self.fc = nn.Linear(2048, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                X = stats.truncnorm(-2, 2, scale=stddev)
Michael Kösel's avatar
Michael Kösel committed
70
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
71
                values = values.view(m.weight.size())
Michael Kösel's avatar
Michael Kösel committed
72
73
                with torch.no_grad():
                    m.weight.copy_(values)
74
            elif isinstance(m, nn.BatchNorm2d):
75
76
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
77
78
79

    def forward(self, x):
        if self.transform_input:
80
81
82
83
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
84
        # N x 3 x 299 x 299
85
        x = self.Conv2d_1a_3x3(x)
86
        # N x 32 x 149 x 149
87
        x = self.Conv2d_2a_3x3(x)
88
        # N x 32 x 147 x 147
89
        x = self.Conv2d_2b_3x3(x)
90
        # N x 64 x 147 x 147
91
        x = F.max_pool2d(x, kernel_size=3, stride=2)
92
        # N x 64 x 73 x 73
93
        x = self.Conv2d_3b_1x1(x)
94
        # N x 80 x 73 x 73
95
        x = self.Conv2d_4a_3x3(x)
96
        # N x 192 x 71 x 71
97
        x = F.max_pool2d(x, kernel_size=3, stride=2)
98
        # N x 192 x 35 x 35
99
        x = self.Mixed_5b(x)
100
        # N x 256 x 35 x 35
101
        x = self.Mixed_5c(x)
surgan12's avatar
surgan12 committed
102
        # N x 288 x 35 x 35
103
        x = self.Mixed_5d(x)
104
        # N x 288 x 35 x 35
105
        x = self.Mixed_6a(x)
106
        # N x 768 x 17 x 17
107
        x = self.Mixed_6b(x)
108
        # N x 768 x 17 x 17
109
        x = self.Mixed_6c(x)
110
        # N x 768 x 17 x 17
111
        x = self.Mixed_6d(x)
112
        # N x 768 x 17 x 17
113
        x = self.Mixed_6e(x)
114
        # N x 768 x 17 x 17
115
116
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)
117
        # N x 768 x 17 x 17
118
        x = self.Mixed_7a(x)
119
        # N x 1280 x 8 x 8
120
        x = self.Mixed_7b(x)
121
        # N x 2048 x 8 x 8
122
        x = self.Mixed_7c(x)
123
        # N x 2048 x 8 x 8
124
125
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
126
        # N x 2048 x 1 x 1
127
        x = F.dropout(x, training=self.training)
128
        # N x 2048 x 1 x 1
129
        x = x.view(x.size(0), -1)
130
        # N x 2048
131
        x = self.fc(x)
132
        # N x 1000 (num_classes)
133
134
135
136
137
138
        if self.training and self.aux_logits:
            return x, aux
        return x


class InceptionA(nn.Module):
soumith's avatar
soumith committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def __init__(self, in_channels, pool_features):
        super(InceptionA, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)

        self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)

        self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)


class InceptionB(nn.Module):
soumith's avatar
soumith committed
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def __init__(self, in_channels):
        super(InceptionB, self).__init__()
        self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)


class InceptionC(nn.Module):
soumith's avatar
soumith committed
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    def __init__(self, in_channels, channels_7x7):
        super(InceptionC, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)

        c7 = channels_7x7
        self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))

        self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))

        self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)


class InceptionD(nn.Module):
soumith's avatar
soumith committed
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    def __init__(self, in_channels):
        super(InceptionD, self).__init__()
        self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)

        self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return torch.cat(outputs, 1)


class InceptionE(nn.Module):
soumith's avatar
soumith committed
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def __init__(self, in_channels):
        super(InceptionE, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)

        self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
soumith's avatar
soumith committed
301

302
303
304
305
306
307
308
309
310
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)
        self.conv1 = BasicConv2d(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001

    def forward(self, x):
311
        # N x 768 x 17 x 17
312
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
313
        # N x 768 x 5 x 5
314
        x = self.conv0(x)
315
        # N x 128 x 5 x 5
316
        x = self.conv1(x)
317
        # N x 768 x 1 x 1
318
319
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
320
        # N x 768 x 1 x 1
321
        x = x.view(x.size(0), -1)
322
        # N x 768
323
        x = self.fc(x)
324
        # N x 1000
325
326
327
328
        return x


class BasicConv2d(nn.Module):
soumith's avatar
soumith committed
329

330
331
332
333
334
335
336
337
338
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)