voc.py 8.92 KB
Newer Older
1
2
3
4
import os
import sys
import tarfile
import collections
5
6
from .vision import VisionDataset

7
8
9
10
11
12
if sys.version_info[0] == 2:
    import xml.etree.cElementTree as ET
else:
    import xml.etree.ElementTree as ET

from PIL import Image
13
from .utils import download_url, check_integrity, verify_str_arg
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DATASET_YEAR_DICT = {
    '2012': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
        'filename': 'VOCtrainval_11-May-2012.tar',
        'md5': '6cd6e144f989b92b3379bac3b3de84fd',
        'base_dir': 'VOCdevkit/VOC2012'
    },
    '2011': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar',
        'filename': 'VOCtrainval_25-May-2011.tar',
        'md5': '6c3384ef61512963050cb5d687e5bf1e',
        'base_dir': 'TrainVal/VOCdevkit/VOC2011'
    },
    '2010': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar',
        'filename': 'VOCtrainval_03-May-2010.tar',
        'md5': 'da459979d0c395079b5c75ee67908abb',
        'base_dir': 'VOCdevkit/VOC2010'
    },
    '2009': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar',
        'filename': 'VOCtrainval_11-May-2009.tar',
        'md5': '59065e4b188729180974ef6572f6a212',
        'base_dir': 'VOCdevkit/VOC2009'
    },
    '2008': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar',
        'filename': 'VOCtrainval_11-May-2012.tar',
        'md5': '2629fa636546599198acfcfbfcf1904a',
        'base_dir': 'VOCdevkit/VOC2008'
    },
    '2007': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
        'filename': 'VOCtrainval_06-Nov-2007.tar',
        'md5': 'c52e279531787c972589f7e41ab4ae64',
        'base_dir': 'VOCdevkit/VOC2007'
    }
}


55
class VOCSegmentation(VisionDataset):
56
57
58
59
60
61
62
63
64
65
66
67
68
    """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.

    Args:
        root (string): Root directory of the VOC Dataset.
        year (string, optional): The dataset year, supports years 2007 to 2012.
        image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
69
70
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
            and returns a transformed version.
71
72
73
74
75
76
77
78
    """

    def __init__(self,
                 root,
                 year='2012',
                 image_set='train',
                 download=False,
                 transform=None,
79
80
81
                 target_transform=None,
                 transforms=None):
        super(VOCSegmentation, self).__init__(root, transforms, transform, target_transform)
82
83
84
85
        self.year = year
        self.url = DATASET_YEAR_DICT[year]['url']
        self.filename = DATASET_YEAR_DICT[year]['filename']
        self.md5 = DATASET_YEAR_DICT[year]['md5']
86
87
        self.image_set = verify_str_arg(image_set, "image_set",
                                        ("train", "trainval", "val"))
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        base_dir = DATASET_YEAR_DICT[year]['base_dir']
        voc_root = os.path.join(self.root, base_dir)
        image_dir = os.path.join(voc_root, 'JPEGImages')
        mask_dir = os.path.join(voc_root, 'SegmentationClass')

        if download:
            download_extract(self.url, self.root, self.filename, self.md5)

        if not os.path.isdir(voc_root):
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')

        split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')

        with open(os.path.join(split_f), "r") as f:
            file_names = [x.strip() for x in f.readlines()]

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
        assert (len(self.images) == len(self.masks))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is the image segmentation.
        """
        img = Image.open(self.images[index]).convert('RGB')
        target = Image.open(self.masks[index])

122
123
        if self.transforms is not None:
            img, target = self.transforms(img, target)
124
125
126
127
128
129
130

        return img, target

    def __len__(self):
        return len(self.images)


131
class VOCDetection(VisionDataset):
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset.

    Args:
        root (string): Root directory of the VOC Dataset.
        year (string, optional): The dataset year, supports years 2007 to 2012.
        image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
            (default: alphabetic indexing of VOC's 20 classes).
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, required): A function/transform that takes in the
            target and transforms it.
146
147
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
            and returns a transformed version.
148
149
150
151
152
153
154
155
    """

    def __init__(self,
                 root,
                 year='2012',
                 image_set='train',
                 download=False,
                 transform=None,
156
157
158
                 target_transform=None,
                 transforms=None):
        super(VOCDetection, self).__init__(root, transforms, transform, target_transform)
159
160
161
162
        self.year = year
        self.url = DATASET_YEAR_DICT[year]['url']
        self.filename = DATASET_YEAR_DICT[year]['filename']
        self.md5 = DATASET_YEAR_DICT[year]['md5']
163
164
        self.image_set = verify_str_arg(image_set, "image_set",
                                        ("train", "trainval", "val"))
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

        base_dir = DATASET_YEAR_DICT[year]['base_dir']
        voc_root = os.path.join(self.root, base_dir)
        image_dir = os.path.join(voc_root, 'JPEGImages')
        annotation_dir = os.path.join(voc_root, 'Annotations')

        if download:
            download_extract(self.url, self.root, self.filename, self.md5)

        if not os.path.isdir(voc_root):
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        splits_dir = os.path.join(voc_root, 'ImageSets/Main')

        split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')

        with open(os.path.join(split_f), "r") as f:
            file_names = [x.strip() for x in f.readlines()]

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.annotations = [os.path.join(annotation_dir, x + ".xml") for x in file_names]
        assert (len(self.images) == len(self.annotations))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is a dictionary of the XML tree.
        """
        img = Image.open(self.images[index]).convert('RGB')
        target = self.parse_voc_xml(
            ET.parse(self.annotations[index]).getroot())

201
202
        if self.transforms is not None:
            img, target = self.transforms(img, target)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        return img, target

    def __len__(self):
        return len(self.images)

    def parse_voc_xml(self, node):
        voc_dict = {}
        children = list(node)
        if children:
            def_dic = collections.defaultdict(list)
            for dc in map(self.parse_voc_xml, children):
                for ind, v in dc.items():
                    def_dic[ind].append(v)
            voc_dict = {
                node.tag:
219
220
                    {ind: v[0] if len(v) == 1 else v
                     for ind, v in def_dic.items()}
221
222
223
224
225
226
227
228
229
230
231
232
            }
        if node.text:
            text = node.text.strip()
            if not children:
                voc_dict[node.tag] = text
        return voc_dict


def download_extract(url, root, filename, md5):
    download_url(url, root, filename, md5)
    with tarfile.open(os.path.join(root, filename), "r") as tar:
        tar.extractall(path=root)