resnet.cpp 4.33 KB
Newer Older
Shahriar's avatar
Shahriar committed
1
2
#include "resnet.h"

3
4
#include "modelsimpl.h"

Shahriar's avatar
Shahriar committed
5
6
7
8
9
10
11
12
13
namespace vision {
namespace models {
namespace _resnetimpl {
torch::nn::Conv2d conv3x3(
    int64_t in,
    int64_t out,
    int64_t stride,
    int64_t groups) {
  torch::nn::Conv2dOptions O(in, out, 3);
14
  O.padding(1).stride(stride).groups(groups).bias(false);
Shahriar's avatar
Shahriar committed
15
16
17
18
19
  return torch::nn::Conv2d(O);
}

torch::nn::Conv2d conv1x1(int64_t in, int64_t out, int64_t stride) {
  torch::nn::Conv2dOptions O(in, out, 1);
20
  O.stride(stride).bias(false);
Shahriar's avatar
Shahriar committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  return torch::nn::Conv2d(O);
}

int BasicBlock::expansion = 1;
int Bottleneck::expansion = 4;

BasicBlock::BasicBlock(
    int64_t inplanes,
    int64_t planes,
    int64_t stride,
    torch::nn::Sequential downsample,
    int64_t groups,
    int64_t base_width)
    : stride(stride), downsample(downsample) {
35
36
37
  TORCH_CHECK(
      groups == 1 && base_width == 64,
      "BasicBlock only supports groups=1 and base_width=64");
Shahriar's avatar
Shahriar committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

  // Both conv1 and downsample layers downsample the input when stride != 1
  conv1 = conv3x3(inplanes, planes, stride);
  conv2 = conv3x3(planes, planes);

  bn1 = torch::nn::BatchNorm(planes);
  bn2 = torch::nn::BatchNorm(planes);

  register_module("conv1", conv1);
  register_module("conv2", conv2);

  register_module("bn1", bn1);
  register_module("bn2", bn2);

  if (!downsample.is_empty())
    register_module("downsample", this->downsample);
}

Bottleneck::Bottleneck(
    int64_t inplanes,
    int64_t planes,
    int64_t stride,
    torch::nn::Sequential downsample,
    int64_t groups,
    int64_t base_width)
    : stride(stride), downsample(downsample) {
  auto width = int64_t(planes * (base_width / 64.)) * groups;

  // Both conv2 and downsample layers downsample the input when stride != 1
  conv1 = conv1x1(inplanes, width);
  conv2 = conv3x3(width, width, stride, groups);
  conv3 = conv1x1(width, planes * expansion);

  bn1 = torch::nn::BatchNorm(width);
  bn2 = torch::nn::BatchNorm(width);
  bn3 = torch::nn::BatchNorm(planes * expansion);

  register_module("conv1", conv1);
  register_module("conv2", conv2);
  register_module("conv3", conv3);

  register_module("bn1", bn1);
  register_module("bn2", bn2);
  register_module("bn3", bn3);

  if (!downsample.is_empty())
    register_module("downsample", this->downsample);
}

torch::Tensor Bottleneck::forward(torch::Tensor X) {
  auto identity = X;

  auto out = conv1->forward(X);
  out = bn1->forward(out).relu_();

  out = conv2->forward(out);
  out = bn2->forward(out).relu_();

  out = conv3->forward(out);
  out = bn3->forward(out);

  if (!downsample.is_empty())
    identity = downsample->forward(X);

  out += identity;
  return out.relu_();
}

torch::Tensor BasicBlock::forward(torch::Tensor x) {
  auto identity = x;

  auto out = conv1->forward(x);
  out = bn1->forward(out).relu_();

  out = conv2->forward(out);
  out = bn2->forward(out);

  if (!downsample.is_empty())
    identity = downsample->forward(x);

  out += identity;
  return out.relu_();
}
} // namespace _resnetimpl

ResNet18Impl::ResNet18Impl(int64_t num_classes, bool zero_init_residual)
    : ResNetImpl({2, 2, 2, 2}, num_classes, zero_init_residual) {}

ResNet34Impl::ResNet34Impl(int64_t num_classes, bool zero_init_residual)
    : ResNetImpl({3, 4, 6, 3}, num_classes, zero_init_residual) {}

ResNet50Impl::ResNet50Impl(int64_t num_classes, bool zero_init_residual)
    : ResNetImpl({3, 4, 6, 3}, num_classes, zero_init_residual) {}

ResNet101Impl::ResNet101Impl(int64_t num_classes, bool zero_init_residual)
    : ResNetImpl({3, 4, 23, 3}, num_classes, zero_init_residual) {}

ResNet152Impl::ResNet152Impl(int64_t num_classes, bool zero_init_residual)
    : ResNetImpl({3, 8, 36, 3}, num_classes, zero_init_residual) {}

ResNext50_32x4dImpl::ResNext50_32x4dImpl(
    int64_t num_classes,
    bool zero_init_residual)
    : ResNetImpl({3, 4, 6, 3}, num_classes, zero_init_residual, 32, 4) {}

ResNext101_32x8dImpl::ResNext101_32x8dImpl(
    int64_t num_classes,
    bool zero_init_residual)
    : ResNetImpl({3, 4, 23, 3}, num_classes, zero_init_residual, 32, 8) {}

148
149
150
151
152
153
154
155
156
157
WideResNet50_2Impl::WideResNet50_2Impl(
    int64_t num_classes,
    bool zero_init_residual)
    : ResNetImpl({3, 4, 6, 3}, num_classes, zero_init_residual, 1, 64 * 2) {}

WideResNet101_2Impl::WideResNet101_2Impl(
    int64_t num_classes,
    bool zero_init_residual)
    : ResNetImpl({3, 4, 23, 3}, num_classes, zero_init_residual, 1, 64 * 2) {}

Shahriar's avatar
Shahriar committed
158
159
} // namespace models
} // namespace vision