s3d.py 7.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
from functools import partial
from typing import Any, Callable, Optional

import torch
from torch import nn
from torchvision.ops.misc import Conv3dNormActivation

from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _KINETICS400_CATEGORIES
12
from .._utils import _ovewrite_named_param, handle_legacy_interface
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


__all__ = [
    "S3D",
    "S3D_Weights",
    "s3d",
]


class TemporalSeparableConv(nn.Sequential):
    def __init__(
        self,
        in_planes: int,
        out_planes: int,
        kernel_size: int,
        stride: int,
        padding: int,
        norm_layer: Callable[..., nn.Module],
    ):
        super().__init__(
            Conv3dNormActivation(
                in_planes,
                out_planes,
                kernel_size=(1, kernel_size, kernel_size),
                stride=(1, stride, stride),
                padding=(0, padding, padding),
                bias=False,
                norm_layer=norm_layer,
            ),
            Conv3dNormActivation(
                out_planes,
                out_planes,
                kernel_size=(kernel_size, 1, 1),
                stride=(stride, 1, 1),
                padding=(padding, 0, 0),
                bias=False,
                norm_layer=norm_layer,
            ),
        )


class SepInceptionBlock3D(nn.Module):
    def __init__(
        self,
        in_planes: int,
        b0_out: int,
        b1_mid: int,
        b1_out: int,
        b2_mid: int,
        b2_out: int,
        b3_out: int,
        norm_layer: Callable[..., nn.Module],
    ):
        super().__init__()

        self.branch0 = Conv3dNormActivation(in_planes, b0_out, kernel_size=1, stride=1, norm_layer=norm_layer)
        self.branch1 = nn.Sequential(
            Conv3dNormActivation(in_planes, b1_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
            TemporalSeparableConv(b1_mid, b1_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
        )
        self.branch2 = nn.Sequential(
            Conv3dNormActivation(in_planes, b2_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
            TemporalSeparableConv(b2_mid, b2_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
        )
        self.branch3 = nn.Sequential(
            nn.MaxPool3d(kernel_size=(3, 3, 3), stride=1, padding=1),
            Conv3dNormActivation(in_planes, b3_out, kernel_size=1, stride=1, norm_layer=norm_layer),
        )

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)
        out = torch.cat((x0, x1, x2, x3), 1)

        return out


class S3D(nn.Module):
    """S3D main class.

    Args:
        num_class (int): number of classes for the classification task.
        dropout (float): dropout probability.
        norm_layer (Optional[Callable]): Module specifying the normalization layer to use.

    Inputs:
        x (Tensor): batch of videos with dimensions (batch, channel, time, height, width)
    """

    def __init__(
        self,
        num_classes: int = 400,
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
107
        dropout: float = 0.2,
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)

        if norm_layer is None:
            norm_layer = partial(nn.BatchNorm3d, eps=0.001, momentum=0.001)

        self.features = nn.Sequential(
            TemporalSeparableConv(3, 64, 7, 2, 3, norm_layer),
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
            Conv3dNormActivation(
                64,
                64,
                kernel_size=1,
                stride=1,
                norm_layer=norm_layer,
            ),
            TemporalSeparableConv(64, 192, 3, 1, 1, norm_layer),
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
            SepInceptionBlock3D(192, 64, 96, 128, 16, 32, 32, norm_layer),
            SepInceptionBlock3D(256, 128, 128, 192, 32, 96, 64, norm_layer),
            nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
            SepInceptionBlock3D(480, 192, 96, 208, 16, 48, 64, norm_layer),
            SepInceptionBlock3D(512, 160, 112, 224, 24, 64, 64, norm_layer),
            SepInceptionBlock3D(512, 128, 128, 256, 24, 64, 64, norm_layer),
            SepInceptionBlock3D(512, 112, 144, 288, 32, 64, 64, norm_layer),
            SepInceptionBlock3D(528, 256, 160, 320, 32, 128, 128, norm_layer),
            nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0)),
            SepInceptionBlock3D(832, 256, 160, 320, 32, 128, 128, norm_layer),
            SepInceptionBlock3D(832, 384, 192, 384, 48, 128, 128, norm_layer),
        )
        self.avgpool = nn.AvgPool3d(kernel_size=(2, 7, 7), stride=1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout),
            nn.Conv3d(1024, num_classes, kernel_size=1, stride=1, bias=True),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = self.classifier(x)
        x = torch.mean(x, dim=(2, 3, 4))
        return x


class S3D_Weights(WeightsEnum):
    KINETICS400_V1 = Weights(
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
156
        url="https://download.pytorch.org/models/s3d-d76dad2f.pth",
157
158
159
160
161
162
163
164
165
        transforms=partial(
            VideoClassification,
            crop_size=(224, 224),
            resize_size=(256, 256),
        ),
        meta={
            "min_size": (224, 224),
            "min_temporal_size": 14,
            "categories": _KINETICS400_CATEGORIES,
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
166
            "recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification#s3d",
167
            "_docs": (
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
168
                "The weights aim to approximate the accuracy of the paper. The accuracies are estimated on clip-level "
169
170
171
172
173
                "with parameters `frame_rate=15`, `clips_per_video=1`, and `clip_len=128`."
            ),
            "num_params": 8320048,
            "_metrics": {
                "Kinetics-400": {
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
174
175
                    "acc@1": 68.368,
                    "acc@5": 88.050,
176
177
                }
            },
178
            "_ops": 17.979,
Nicolas Hug's avatar
Nicolas Hug committed
179
            "_file_size": 31.972,
180
181
182
183
184
185
        },
    )
    DEFAULT = KINETICS400_V1


@register_model()
186
@handle_legacy_interface(weights=("pretrained", S3D_Weights.KINETICS400_V1))
187
188
189
190
191
def s3d(*, weights: Optional[S3D_Weights] = None, progress: bool = True, **kwargs: Any) -> S3D:
    """Construct Separable 3D CNN model.

    Reference: `Rethinking Spatiotemporal Feature Learning <https://arxiv.org/abs/1712.04851>`__.

192
193
    .. betastatus:: video module

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    Args:
        weights (:class:`~torchvision.models.video.S3D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.video.S3D_Weights`
            below for more details, and possible values. By default, no
            pre-trained weights are used.
        progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.video.S3D`` base class.
            Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/video/s3d.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.video.S3D_Weights
        :members:
    """
    weights = S3D_Weights.verify(weights)

    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = S3D(**kwargs)

    if weights is not None:
217
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
218
219

    return model