fcn.py 8.76 KB
Newer Older
1
2
from functools import partial
from typing import Any, Optional
3

4
5
from torch import nn

6
from ...transforms._presets import SemanticSegmentation
7
from .._api import register_model, Weights, WeightsEnum
8
from .._meta import _VOC_CATEGORIES
9
10
from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights
11
from ._utils import _SimpleSegmentationModel
12
13


14
__all__ = ["FCN", "FCN_ResNet50_Weights", "FCN_ResNet101_Weights", "fcn_resnet50", "fcn_resnet101"]
15
16


17
class FCN(_SimpleSegmentationModel):
18
    """
19
20
21
    Implements FCN model from
    `"Fully Convolutional Networks for Semantic Segmentation"
    <https://arxiv.org/abs/1411.4038>`_.
22

23
    Args:
24
25
26
27
28
29
30
31
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "out" for the last feature map used, and "aux" if an auxiliary classifier
            is used.
        classifier (nn.Module): module that takes the "out" element returned from
            the backbone and returns a dense prediction.
        aux_classifier (nn.Module, optional): auxiliary classifier used during training
    """
32

33
34
35
36
    pass


class FCNHead(nn.Sequential):
37
    def __init__(self, in_channels: int, channels: int) -> None:
38
39
40
41
42
43
        inter_channels = in_channels // 4
        layers = [
            nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(),
            nn.Dropout(0.1),
44
            nn.Conv2d(inter_channels, channels, 1),
45
46
        ]

47
        super().__init__(*layers)
48
49


50
51
_COMMON_META = {
    "categories": _VOC_CATEGORIES,
52
    "min_size": (1, 1),
53
54
55
56
    "_docs": """
        These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
        dataset.
    """,
57
58
59
60
61
62
63
64
65
66
67
}


class FCN_ResNet50_Weights(WeightsEnum):
    COCO_WITH_VOC_LABELS_V1 = Weights(
        url="https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth",
        transforms=partial(SemanticSegmentation, resize_size=520),
        meta={
            **_COMMON_META,
            "num_params": 35322218,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50",
68
69
70
71
72
            "_metrics": {
                "COCO-val2017-VOC-labels": {
                    "miou": 60.5,
                    "pixel_acc": 91.4,
                }
73
            },
74
            "_ops": 152.717,
Nicolas Hug's avatar
Nicolas Hug committed
75
            "_file_size": 135.009,
76
77
78
79
80
81
82
83
84
85
86
87
88
        },
    )
    DEFAULT = COCO_WITH_VOC_LABELS_V1


class FCN_ResNet101_Weights(WeightsEnum):
    COCO_WITH_VOC_LABELS_V1 = Weights(
        url="https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth",
        transforms=partial(SemanticSegmentation, resize_size=520),
        meta={
            **_COMMON_META,
            "num_params": 54314346,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101",
89
90
91
92
93
            "_metrics": {
                "COCO-val2017-VOC-labels": {
                    "miou": 63.7,
                    "pixel_acc": 91.9,
                }
94
            },
95
            "_ops": 232.738,
Nicolas Hug's avatar
Nicolas Hug committed
96
            "_file_size": 207.711,
97
98
99
100
101
        },
    )
    DEFAULT = COCO_WITH_VOC_LABELS_V1


102
def _fcn_resnet(
103
    backbone: ResNet,
104
105
106
107
108
109
    num_classes: int,
    aux: Optional[bool],
) -> FCN:
    return_layers = {"layer4": "out"}
    if aux:
        return_layers["layer3"] = "aux"
110
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
111
112
113
114
115
116

    aux_classifier = FCNHead(1024, num_classes) if aux else None
    classifier = FCNHead(2048, num_classes)
    return FCN(backbone, classifier, aux_classifier)


117
@register_model()
118
119
120
121
@handle_legacy_interface(
    weights=("pretrained", FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
122
def fcn_resnet50(
123
124
    *,
    weights: Optional[FCN_ResNet50_Weights] = None,
125
    progress: bool = True,
126
    num_classes: Optional[int] = None,
127
    aux_loss: Optional[bool] = None,
128
129
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    **kwargs: Any,
130
) -> FCN:
131
132
    """Fully-Convolutional Network model with a ResNet-50 backbone from the `Fully Convolutional
    Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper.
133

134
135
    .. betastatus:: segmentation module

136
    Args:
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        weights (:class:`~torchvision.models.segmentation.FCN_ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.FCN_ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background).
        aux_loss (bool, optional): If True, it uses an auxiliary loss.
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained
            weights for the backbone.
        **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.segmentation.FCN_ResNet50_Weights
        :members:
155
    """
156

157
158
159
160
161
    weights = FCN_ResNet50_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
162
163
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
        aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
164
165
    elif num_classes is None:
        num_classes = 21
166

167
    backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
168
169
    model = _fcn_resnet(backbone, num_classes, aux_loss)

170
    if weights is not None:
171
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
172

173
174
175
    return model


176
@register_model()
177
178
179
180
@handle_legacy_interface(
    weights=("pretrained", FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1),
    weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1),
)
181
def fcn_resnet101(
182
183
    *,
    weights: Optional[FCN_ResNet101_Weights] = None,
184
    progress: bool = True,
185
    num_classes: Optional[int] = None,
186
    aux_loss: Optional[bool] = None,
187
188
    weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
    **kwargs: Any,
189
) -> FCN:
190
191
    """Fully-Convolutional Network model with a ResNet-101 backbone from the `Fully Convolutional
    Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper.
192

193
194
    .. betastatus:: segmentation module

195
    Args:
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        weights (:class:`~torchvision.models.segmentation.FCN_ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.FCN_ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background).
        aux_loss (bool, optional): If True, it uses an auxiliary loss.
        weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained
            weights for the backbone.
        **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.segmentation.FCN_ResNet101_Weights
        :members:
214
    """
215

216
217
218
219
220
    weights = FCN_ResNet101_Weights.verify(weights)
    weights_backbone = ResNet101_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
221
222
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
        aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
223
224
    elif num_classes is None:
        num_classes = 21
225

226
    backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
227
228
    model = _fcn_resnet(backbone, num_classes, aux_loss)

229
    if weights is not None:
230
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
231

232
    return model