mnasnet.cpp 6.27 KB
Newer Older
Shahriar's avatar
Shahriar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include "mnasnet.h"

#include "modelsimpl.h"

namespace vision {
namespace models {
using Options = torch::nn::Conv2dOptions;

struct MNASNetInvertedResidualImpl : torch::nn::Module {
  bool apply_residual;
  torch::nn::Sequential layers;

  MNASNetInvertedResidualImpl(
      int64_t input,
      int64_t output,
      int64_t kernel,
      int64_t stride,
      double expansion_factor,
      double bn_momentum = 0.1) {
20
21
    TORCH_CHECK(stride == 1 || stride == 2);
    TORCH_CHECK(kernel == 3 || kernel == 5);
Shahriar's avatar
Shahriar committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    auto mid = int64_t(input * expansion_factor);
    apply_residual = input == output && stride == 1;

    layers->push_back(
        torch::nn::Conv2d(Options(input, mid, 1).with_bias(false)));
    layers->push_back(torch::nn::BatchNorm(
        torch::nn::BatchNormOptions(mid).momentum(bn_momentum)));
    layers->push_back(
        torch::nn::Functional(torch::nn::Functional(modelsimpl::relu_)));
    layers->push_back(
        torch::nn::Conv2d(torch::nn::Conv2d(Options(mid, mid, kernel)
                                                .padding(kernel / 2)
                                                .stride(stride)
                                                .groups(mid)
                                                .with_bias(false))));
    layers->push_back(torch::nn::BatchNorm(
        torch::nn::BatchNormOptions(mid).momentum(bn_momentum)));
    layers->push_back(
        torch::nn::Functional(torch::nn::Functional(modelsimpl::relu_)));
    layers->push_back(
        torch::nn::Conv2d(Options(mid, output, 1).with_bias(false)));
    layers->push_back(torch::nn::BatchNorm(
        torch::nn::BatchNormOptions(output).momentum(bn_momentum)));

    register_module("layers", layers);
  }

  torch::Tensor forward(torch::Tensor x) {
    if (apply_residual)
      return layers->forward(x) + x;
    return layers->forward(x);
  }
};

TORCH_MODULE(MNASNetInvertedResidual);

struct StackSequentailImpl : torch::nn::SequentialImpl {
  using SequentialImpl::SequentialImpl;

  torch::Tensor forward(torch::Tensor x) {
    return SequentialImpl::forward(x);
  }
};

TORCH_MODULE(StackSequentail);

StackSequentail stack(
    int64_t input,
    int64_t output,
    int64_t kernel,
    int64_t stride,
    double exp_factor,
    int64_t repeats,
    double bn_momentum) {
77
  TORCH_CHECK(repeats >= 1);
Shahriar's avatar
Shahriar committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

  StackSequentail seq;
  seq->push_back(MNASNetInvertedResidual(
      input, output, kernel, stride, exp_factor, bn_momentum));

  for (int64_t i = 1; i < repeats; ++i)
    seq->push_back(MNASNetInvertedResidual(
        output, output, kernel, 1, exp_factor, bn_momentum));

  return seq;
}

int64_t round_to_multiple_of(
    int64_t val,
    int64_t divisor,
    double round_up_bias = .9) {
94
  TORCH_CHECK(0.0 < round_up_bias && round_up_bias < 1.0);
Shahriar's avatar
Shahriar committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  auto new_val = std::max(divisor, (val + divisor / 2) / divisor * divisor);
  return new_val >= round_up_bias * val ? new_val : new_val + divisor;
}

std::vector<int64_t> scale_depths(std::vector<int64_t> depths, double alpha) {
  std::vector<int64_t> data(depths.size());
  for (size_t i = 0; i < data.size(); ++i) {
    data[i] = round_to_multiple_of(int64_t(depths[i] * alpha), 8);
  }

  return data;
}

void MNASNetImpl::_initialize_weights() {
  for (auto& module : modules(/*include_self=*/false)) {
    if (auto M = dynamic_cast<torch::nn::Conv2dImpl*>(module.get()))
      torch::nn::init::kaiming_normal_(
112
113
114
115
          M->weight,
          0,
          torch::nn::init::FanMode::FanOut,
          torch::nn::init::Nonlinearity::ReLU);
Shahriar's avatar
Shahriar committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    else if (auto M = dynamic_cast<torch::nn::BatchNormImpl*>(module.get())) {
      torch::nn::init::ones_(M->weight);
      torch::nn::init::zeros_(M->bias);
    } else if (auto M = dynamic_cast<torch::nn::LinearImpl*>(module.get())) {
      torch::nn::init::normal_(M->weight, 0, 0.01);
      torch::nn::init::zeros_(M->bias);
    }
  }
}

#define BN_MOMENTUM 1 - 0.9997

MNASNetImpl::MNASNetImpl(double alpha, int64_t num_classes, double dropout) {
  auto depths = scale_depths({24, 40, 80, 96, 192, 320}, alpha);

  layers->push_back(torch::nn::Conv2d(
      Options(3, 32, 3).padding(1).stride(2).with_bias(false)));
  layers->push_back(torch::nn::BatchNorm(
      torch::nn::BatchNormOptions(32).momentum(BN_MOMENTUM)));
  layers->push_back(torch::nn::Functional(modelsimpl::relu_));
  layers->push_back(torch::nn::Conv2d(
      Options(32, 32, 3).padding(1).stride(1).groups(32).with_bias(false)));
  layers->push_back(torch::nn::BatchNorm(
      torch::nn::BatchNormOptions(32).momentum(BN_MOMENTUM)));
  layers->push_back(torch::nn::Functional(modelsimpl::relu_));
  layers->push_back(torch::nn::Conv2d(
      Options(32, 16, 1).padding(0).stride(1).with_bias(false)));
  layers->push_back(torch::nn::BatchNorm(
      torch::nn::BatchNormOptions(16).momentum(BN_MOMENTUM)));

  layers->push_back(stack(16, depths[0], 3, 2, 3, 3, BN_MOMENTUM));
  layers->push_back(stack(depths[0], depths[1], 5, 2, 3, 3, BN_MOMENTUM));
  layers->push_back(stack(depths[1], depths[2], 5, 2, 6, 3, BN_MOMENTUM));
  layers->push_back(stack(depths[2], depths[3], 3, 1, 6, 2, BN_MOMENTUM));
  layers->push_back(stack(depths[3], depths[4], 5, 2, 6, 4, BN_MOMENTUM));
  layers->push_back(stack(depths[4], depths[5], 3, 1, 6, 1, BN_MOMENTUM));

  layers->push_back(torch::nn::Conv2d(
      Options(depths[5], 1280, 1).padding(0).stride(1).with_bias(false)));
  layers->push_back(torch::nn::BatchNorm(
      torch::nn::BatchNormOptions(1280).momentum(BN_MOMENTUM)));
  layers->push_back(torch::nn::Functional(modelsimpl::relu_));

  classifier = torch::nn::Sequential(
      torch::nn::Dropout(dropout), torch::nn::Linear(1280, num_classes));

  register_module("layers", layers);
  register_module("classifier", classifier);

  _initialize_weights();
}

torch::Tensor MNASNetImpl::forward(torch::Tensor x) {
  x = layers->forward(x);
  x = x.mean({2, 3});
  return classifier->forward(x);
}

MNASNet0_5Impl::MNASNet0_5Impl(int64_t num_classes, double dropout)
    : MNASNetImpl(.5, num_classes, dropout) {}

MNASNet0_75Impl::MNASNet0_75Impl(int64_t num_classes, double dropout)
    : MNASNetImpl(.75, num_classes, dropout) {}

MNASNet1_0Impl::MNASNet1_0Impl(int64_t num_classes, double dropout)
    : MNASNetImpl(1, num_classes, dropout) {}

MNASNet1_3Impl::MNASNet1_3Impl(int64_t num_classes, double dropout)
    : MNASNetImpl(1.3, num_classes, dropout) {}

} // namespace models
} // namespace vision