common_utils.py 17.2 KB
Newer Older
1
2
3
4
import os
import shutil
import tempfile
import contextlib
eellison's avatar
eellison committed
5
6
7
import unittest
import argparse
import sys
8
import io
eellison's avatar
eellison committed
9
import torch
10
import warnings
eellison's avatar
eellison committed
11
import __main__
12
import random
13
import inspect
14

15
from numbers import Number
Philip Meier's avatar
Philip Meier committed
16
from torch._six import string_classes
17
from collections import OrderedDict
18
from _utils_internal import get_relative_path
19

20
21
22
import numpy as np
from PIL import Image

23
24
25
26
IS_PY39 = sys.version_info.major == 3 and sys.version_info.minor == 9
PY39_SEGFAULT_SKIP_MSG = "Segmentation fault with Python 3.9, see https://github.com/pytorch/vision/issues/3367"
PY39_SKIP = unittest.skipIf(IS_PY39, PY39_SEGFAULT_SKIP_MSG)

27
28
29
30
31
32
33
34
35
36
37

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
38
39


40
41
42
43
44
45
def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)


eellison's avatar
eellison committed
46
ACCEPT = os.getenv('EXPECTTEST_ACCEPT')
47
48
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'

eellison's avatar
eellison committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
if not ACCEPT:
    ACCEPT = args.accept
for i, arg in enumerate(sys.argv):
    if arg == '--accept':
        del sys.argv[i]
        break


class MapNestedTensorObjectImpl(object):
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


90
91
92
93
94
95
96
97
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


eellison's avatar
eellison committed
98
99
100
# adapted from TestCase in torch/test/common_utils to accept non-string
# inputs and set maximum binary size
class TestCase(unittest.TestCase):
101
102
    precision = 1e-5

103
    def _get_expected_file(self, subname=None, strip_suffix=None):
104
        def remove_prefix_suffix(text, prefix, suffix):
eellison's avatar
eellison committed
105
            if text.startswith(prefix):
106
107
108
                text = text[len(prefix):]
            if suffix is not None and text.endswith(suffix):
                text = text[:len(text) - len(suffix)]
eellison's avatar
eellison committed
109
110
111
112
113
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.
        module_id = self.__class__.__module__
114
        munged_id = remove_prefix_suffix(self.id(), module_id + ".", strip_suffix)
eellison's avatar
eellison committed
115

116
117
118
119
120
121
122
        # Determine expected file based on environment
        expected_file_base = get_relative_path(
            os.path.realpath(sys.modules[module_id].__file__),
            "expect")

        # Set expected_file based on subname.
        expected_file = os.path.join(expected_file_base, munged_id)
eellison's avatar
eellison committed
123
124
125
126
        if subname:
            expected_file += "_" + subname
        expected_file += "_expect.pkl"

127
128
        if not ACCEPT and not os.path.exists(expected_file):
            raise RuntimeError(
129
130
131
                f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
                "to accept the current output, run:\n"
                f"python {__main__.__file__} {munged_id} --accept")
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        return expected_file

    def assertExpected(self, output, subname=None, prec=None, strip_suffix=None):
        r"""
        Test that a python value matches the recorded contents of a file
        derived from the name of this test and subname.  The value must be
        pickable with `torch.save`. This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.

        strip_suffix allows different tests that expect similar numerics, e.g.
        "test_xyz_cuda" and "test_xyz_cpu", to use the same pickled data.
        test_xyz_cuda would pass strip_suffix="_cuda", test_xyz_cpu would pass
        strip_suffix="_cpu", and they would both use a data file name based on
        "test_xyz".
        """
        expected_file = self._get_expected_file(subname, strip_suffix)

        if ACCEPT:
156
157
            filename = {os.path.basename(expected_file)}
            print("Accepting updated output for {}:\n\n{}".format(filename, output))
eellison's avatar
eellison committed
158
159
160
            torch.save(output, expected_file)
            MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
            binary_size = os.path.getsize(expected_file)
161
162
            if binary_size > MAX_PICKLE_SIZE:
                raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
eellison's avatar
eellison committed
163
        else:
164
            expected = torch.load(expected_file)
165
            self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
166

167
168
169
170
171
172
173
174
175
    def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
        """
        This is copied from pytorch/test/common_utils.py's TestCase.assertEqual
        """
        if isinstance(prec, str) and message == '':
            message = prec
            prec = None
        if prec is None:
            prec = self.precision
eellison's avatar
eellison committed
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
        if isinstance(x, torch.Tensor) and isinstance(y, Number):
            self.assertEqual(x.item(), y, prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(y, torch.Tensor) and isinstance(x, Number):
            self.assertEqual(x, y.item(), prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
            def assertTensorsEqual(a, b):
                super(TestCase, self).assertEqual(a.size(), b.size(), message)
                if a.numel() > 0:
                    if (a.device.type == 'cpu' and (a.dtype == torch.float16 or a.dtype == torch.bfloat16)):
                        # CPU half and bfloat16 tensors don't have the methods we need below
                        a = a.to(torch.float32)
                    b = b.to(a)
eellison's avatar
eellison committed
191

192
193
194
195
196
197
198
199
                    if (a.dtype == torch.bool) != (b.dtype == torch.bool):
                        raise TypeError("Was expecting both tensors to be bool type.")
                    else:
                        if a.dtype == torch.bool and b.dtype == torch.bool:
                            # we want to respect precision but as bool doesn't support substraction,
                            # boolean tensor has to be converted to int
                            a = a.to(torch.int)
                            b = b.to(torch.int)
eellison's avatar
eellison committed
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                        diff = a - b
                        if a.is_floating_point():
                            # check that NaNs are in the same locations
                            nan_mask = torch.isnan(a)
                            self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
                            diff[nan_mask] = 0
                            # inf check if allow_inf=True
                            if allow_inf:
                                inf_mask = torch.isinf(a)
                                inf_sign = inf_mask.sign()
                                self.assertTrue(torch.equal(inf_sign, torch.isinf(b).sign()), message)
                                diff[inf_mask] = 0
                        # TODO: implement abs on CharTensor (int8)
                        if diff.is_signed() and diff.dtype != torch.int8:
                            diff = diff.abs()
                        max_err = diff.max()
                        tolerance = prec + prec * abs(a.max())
                        self.assertLessEqual(max_err, tolerance, message)
            super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
            super(TestCase, self).assertEqual(x.is_quantized, y.is_quantized, message)
            if x.is_sparse:
                x = self.safeCoalesce(x)
                y = self.safeCoalesce(y)
                assertTensorsEqual(x._indices(), y._indices())
                assertTensorsEqual(x._values(), y._values())
            elif x.is_quantized and y.is_quantized:
                self.assertEqual(x.qscheme(), y.qscheme(), prec=prec,
                                 message=message, allow_inf=allow_inf)
                if x.qscheme() == torch.per_tensor_affine:
                    self.assertEqual(x.q_scale(), y.q_scale(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_zero_point(), y.q_zero_point(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                elif x.qscheme() == torch.per_channel_affine:
                    self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
                                     prec=prec, message=message)
                self.assertEqual(x.dtype, y.dtype)
                self.assertEqual(x.int_repr().to(torch.int32),
                                 y.int_repr().to(torch.int32), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                assertTensorsEqual(x, y)
        elif isinstance(x, string_classes) and isinstance(y, string_classes):
            super(TestCase, self).assertEqual(x, y, message)
        elif type(x) == set and type(y) == set:
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, dict) and isinstance(y, dict):
            if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
                self.assertEqual(x.items(), y.items(), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                self.assertEqual(set(x.keys()), set(y.keys()), prec=prec,
                                 message=message, allow_inf=allow_inf)
                key_list = list(x.keys())
                self.assertEqual([x[k] for k in key_list],
                                 [y[k] for k in key_list],
                                 prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif is_iterable(x) and is_iterable(y):
            super(TestCase, self).assertEqual(len(x), len(y), message)
            for x_, y_ in zip(x, y):
                self.assertEqual(x_, y_, prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif isinstance(x, bool) and isinstance(y, bool):
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, Number) and isinstance(y, Number):
Philip Meier's avatar
Philip Meier committed
273
            inf = float("inf")
274
275
276
277
278
279
280
281
282
            if abs(x) == inf or abs(y) == inf:
                if allow_inf:
                    super(TestCase, self).assertEqual(x, y, message)
                else:
                    self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
                return
            super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
        else:
            super(TestCase, self).assertEqual(x, y, message)
eellison's avatar
eellison committed
283

284
    def check_jit_scriptable(self, nn_module, args, unwrapper=None, skip=False):
285
286
287
288
289
290
        """
        Check that a nn.Module's results in TorchScript match eager and that it
        can be exported
        """
        if not TEST_WITH_SLOW or skip:
            # TorchScript is not enabled, skip these tests
291
292
293
294
295
296
297
298
            msg = "The check_jit_scriptable test for {} was skipped. " \
                  "This test checks if the module's results in TorchScript " \
                  "match eager and that it can be exported. To run these " \
                  "tests make sure you set the environment variable " \
                  "PYTORCH_TEST_WITH_SLOW=1 and that the test is not " \
                  "manually skipped.".format(nn_module.__class__.__name__)
            warnings.warn(msg, RuntimeWarning)
            return None
eellison's avatar
eellison committed
299

300
301
302
303
304
305
306
307
308
309
        sm = torch.jit.script(nn_module)

        with freeze_rng_state():
            eager_out = nn_module(*args)

        with freeze_rng_state():
            script_out = sm(*args)
            if unwrapper:
                script_out = unwrapper(script_out)

310
        self.assertEqual(eager_out, script_out, prec=1e-4)
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        self.assertExportImportModule(sm, args)

        return sm

    def getExportImportCopy(self, m):
        """
        Save and load a TorchScript model
        """
        buffer = io.BytesIO()
        torch.jit.save(m, buffer)
        buffer.seek(0)
        imported = torch.jit.load(buffer)
        return imported

    def assertExportImportModule(self, m, args):
        """
        Check that the results of a model are the same after saving and loading
        """
        m_import = self.getExportImportCopy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
334
        self.assertEqual(results, results_from_imported, prec=3e-5)
335
336
337
338
339
340
341
342
343
344
345


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)
346
347
348
349
350


class TransformsTester(unittest.TestCase):

    def _create_data(self, height=3, width=3, channels=3, device="cpu"):
351
        tensor = torch.randint(0, 256, (channels, height, width), dtype=torch.uint8, device=device)
352
353
354
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().cpu().numpy())
        return tensor, pil_img

355
356
    def _create_data_batch(self, height=3, width=3, channels=3, num_samples=4, device="cpu"):
        batch_tensor = torch.randint(
357
            0, 256,
358
359
360
361
362
363
            (num_samples, channels, height, width),
            dtype=torch.uint8,
            device=device
        )
        return batch_tensor

364
365
366
367
368
369
370
371
372
    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
        if msg is None:
            msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
        self.assertTrue(tensor.cpu().equal(pil_tensor), msg)

373
374
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None, agg_method="mean",
                               allowed_percentage_diff=None):
375
376
377
378
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)
379
380
381
382
383
384

        if allowed_percentage_diff is not None:
            # Assert that less than a given %age of pixels are different
            self.assertTrue(
                (tensor != pil_tensor).to(torch.float).mean() <= allowed_percentage_diff
            )
vfdev's avatar
vfdev committed
385
        # error value can be mean absolute error, max abs error
386
387
388
        # Convert to float to avoid underflow when computing absolute difference
        tensor = tensor.to(torch.float)
        pil_tensor = pil_tensor.to(torch.float)
vfdev's avatar
vfdev committed
389
        err = getattr(torch, agg_method)(torch.abs(tensor - pil_tensor)).item()
390
391
392
393
        self.assertTrue(
            err < tol,
            msg="{}: err={}, tol={}: \n{}\nvs\n{}".format(msg, err, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )
394
395
396
397
398
399
400
401
402
403
404
405
406


def cycle_over(objs):
    for idx, obj in enumerate(objs):
        yield obj, objs[:idx] + objs[idx + 1:]


def int_dtypes():
    return torch.testing.integral_types()


def float_dtypes():
    return torch.testing.floating_types()
407
408
409
410
411
412
413
414


@contextlib.contextmanager
def disable_console_output():
    with contextlib.ExitStack() as stack, open(os.devnull, "w") as devnull:
        stack.enter_context(contextlib.redirect_stdout(devnull))
        stack.enter_context(contextlib.redirect_stderr(devnull))
        yield
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431


def call_args_to_kwargs_only(call_args, *callable_or_arg_names):
    callable_or_arg_name = callable_or_arg_names[0]
    if callable(callable_or_arg_name):
        argspec = inspect.getfullargspec(callable_or_arg_name)
        arg_names = argspec.args
        if isinstance(callable_or_arg_name, type):
            # remove self
            arg_names.pop(0)
    else:
        arg_names = callable_or_arg_names

    args, kwargs = call_args
    kwargs_only = kwargs.copy()
    kwargs_only.update(dict(zip(arg_names, args)))
    return kwargs_only