cifar.py 4.86 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import numpy as np
import sys
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

class CIFAR10(data.Dataset):
    base_folder = 'cifar-10-batches-py'
    url = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
    filename = "cifar-10-python.tar.gz"
    tgz_mdf = 'c58f30108f718f92721af3b95e74349a'
    train_list = [
            ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
            ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
            ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
            ['data_batch_4', '634d18415352ddfa80567beed471001a'],
            ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
    ]

    test_list = [
            ['test_batch', '40351d587109b95175f43aff81a1287e'],
    ]

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
        self.root = root
        self.transform = transform
        self.target_transform = target_transform
        self.train = train # training set or test set
        
        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' 
                               + ' You can use download=True to download it')
                
        # now load the picked numpy arrays
        self.train_data = []
        self.train_labels = []
        for fentry in self.train_list:
            f = fentry[0]
            file = os.path.join(root, self.base_folder, f)
            fo = open(file, 'rb')
            entry = pickle.load(fo)
            self.train_data.append(entry['data'])
            if 'labels' in entry:
                self.train_labels += entry['labels']
            else:
                self.train_labels += entry['fine_labels']
            fo.close()

        self.train_data = np.concatenate(self.train_data)

        f = self.test_list[0][0]
        file = os.path.join(root, self.base_folder, f)
        fo = open(file, 'rb')
        entry = pickle.load(fo)
        self.test_data = entry['data']
        if 'labels' in entry:
            self.test_labels = entry['labels']
        else:
            self.test_labels = entry['fine_labels']
        fo.close()

        self.train_data = self.train_data.reshape((50000, 3, 32, 32))
        self.test_data = self.test_data.reshape((10000, 3, 32, 32))

    def __getitem__(self, index):
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
            return 50000
        else:
            return 10000

    def _check_integrity(self):
        import hashlib
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not os.path.isfile(fpath):
                return False
            md5c = hashlib.md5(open(fpath, 'rb').read()).hexdigest()
            if md5c != md5:
                return False
        return True

    def download(self):
        from six.moves import urllib
        import tarfile
        import hashlib

        root = self.root
        fpath = os.path.join(root, self.filename)

        try:
            os.makedirs(root)
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        if self._check_integrity():
            print('Files already downloaded and verified')
            return
        
        # downloads file
        if os.path.isfile(fpath) and \
           hashlib.md5(open(fpath, 'rb').read()).hexdigest() == self.tgz_md5:
            print('Using downloaded file: ' + fpath)
        else:
            print('Downloading ' + self.url + ' to ' + fpath)
            urllib.request.urlretrieve(self.url, fpath)

        # extract file
        cwd = os.getcwd()
        print('Extracting tar file')
        tar = tarfile.open(fpath, "r:gz")
        os.chdir(root)        
        tar.extractall()
        tar.close()
        os.chdir(cwd)
        print('Done!')


class CIFAR100(CIFAR10):
    base_folder = 'cifar-100-python'
    url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
    filename = "cifar-100-python.tar.gz"
    tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
    train_list = [
            ['train', '16019d7e3df5f24257cddd939b257f8d'],
    ]

    test_list = [
            ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
    ]