shufflenetv2.py 5.75 KB
Newer Older
Bar's avatar
Bar committed
1
2
3
4
import functools

import torch
import torch.nn as nn
ekka's avatar
ekka committed
5
from .utils import load_state_dict_from_url
Bar's avatar
Bar committed
6

7
8
9
10
11

__all__ = [
    'ShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0',
    'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0'
]
Bar's avatar
Bar committed
12
13

model_urls = {
14
15
    'shufflenetv2_x0.5': 'https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth',
    'shufflenetv2_x1.0': 'https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth',
Bar's avatar
Bar committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    'shufflenetv2_x1.5': None,
    'shufflenetv2_x2.0': None,
}


def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups,
               channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride):
        super(InvertedResidual, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2
        assert (self.stride != 1) or (inp == branch_features << 1)

        pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False)
        dw_conv33 = functools.partial(self.depthwise_conv,
                                      kernel_size=3, stride=self.stride, padding=1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
                dw_conv33(inp, inp),
                nn.BatchNorm2d(inp),
                pw_conv11(inp, branch_features),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        self.branch2 = nn.Sequential(
            pw_conv11(inp if (self.stride > 1) else branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            dw_conv33(branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            pw_conv11(branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out


class ShuffleNetV2(nn.Module):
Bar's avatar
Bar committed
89
    def __init__(self, stages_repeats, stages_out_channels, num_classes=1000):
Bar's avatar
Bar committed
90
91
        super(ShuffleNetV2, self).__init__()

Bar's avatar
Bar committed
92
93
94
95
96
        if len(stages_repeats) != 3:
            raise ValueError('expected stages_repeats as list of 3 positive ints')
        if len(stages_out_channels) != 5:
            raise ValueError('expected stages_out_channels as list of 5 positive ints')
        self._stage_out_channels = stages_out_channels
ekka's avatar
ekka committed
97

Bar's avatar
Bar committed
98
99
        input_channels = 3
        output_channels = self._stage_out_channels[0]
Bar's avatar
Bar committed
100
101
102
103
104
105
106
107
108
109
110
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        input_channels = output_channels

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
        for name, repeats, output_channels in zip(
Bar's avatar
Bar committed
111
                stage_names, stages_repeats, self._stage_out_channels[1:]):
Bar's avatar
Bar committed
112
113
114
115
116
117
            seq = [InvertedResidual(input_channels, output_channels, 2)]
            for i in range(repeats - 1):
                seq.append(InvertedResidual(output_channels, output_channels, 1))
            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels

Bar's avatar
Bar committed
118
        output_channels = self._stage_out_channels[-1]
Bar's avatar
Bar committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        self.conv5 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )

        self.fc = nn.Linear(output_channels, num_classes)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.conv5(x)
        x = x.mean([2, 3])  # globalpool
        x = self.fc(x)
        return x


Bar's avatar
Bar committed
139
140
def _shufflenetv2(arch, pretrained, progress, *args, **kwargs):
    model = ShuffleNetV2(*args, **kwargs)
Bar's avatar
Bar committed
141
142

    if pretrained:
ekka's avatar
ekka committed
143
        model_url = model_urls[arch]
Bar's avatar
Bar committed
144
        if model_url is None:
ekka's avatar
ekka committed
145
146
            raise NotImplementedError('pretrained {} is not supported as of now'.format(arch))
        else:
147
            state_dict = load_state_dict_from_url(model_url, progress=progress)
ekka's avatar
ekka committed
148
            model.load_state_dict(state_dict)
Bar's avatar
Bar committed
149
150
151
152

    return model


153
def shufflenet_v2_x0_5(pretrained=False, progress=True, **kwargs):
Bar's avatar
Bar committed
154
155
    return _shufflenetv2('shufflenetv2_x0.5', pretrained, progress,
                         [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs)
Bar's avatar
Bar committed
156
157


158
def shufflenet_v2_x1_0(pretrained=False, progress=True, **kwargs):
Bar's avatar
Bar committed
159
160
    return _shufflenetv2('shufflenetv2_x1.0', pretrained, progress,
                         [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs)
Bar's avatar
Bar committed
161
162


163
def shufflenet_v2_x1_5(pretrained=False, progress=True, **kwargs):
Bar's avatar
Bar committed
164
165
    return _shufflenetv2('shufflenetv2_x1.5', pretrained, progress,
                         [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs)
Bar's avatar
Bar committed
166
167


168
def shufflenet_v2_x2_0(pretrained=False, progress=True, **kwargs):
Bar's avatar
Bar committed
169
170
    return _shufflenetv2('shufflenetv2_x2.0', pretrained, progress,
                         [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)