retinanet.py 26.9 KB
Newer Older
1
2
import math
import warnings
3
4
from collections import OrderedDict
from typing import Dict, List, Tuple, Optional
5
6

import torch
7
from torch import nn, Tensor
8

9
from ..._internally_replaced_utils import load_state_dict_from_url
10
11
12
from ...ops import sigmoid_focal_loss
from ...ops import boxes as box_ops
from ...ops.feature_pyramid_network import LastLevelP6P7
13
from . import _utils as det_utils
14
from ._utils import overwrite_eps
15
from .anchor_utils import AnchorGenerator
16
from .backbone_utils import resnet_fpn_backbone, _validate_trainable_layers
17
from .transform import GeneralizedRCNNTransform
18
19


20
__all__ = ["RetinaNet", "retinanet_resnet50_fpn"]
21
22
23
24
25
26
27
28
29
30
31
32
33


def _sum(x: List[Tensor]) -> Tensor:
    res = x[0]
    for i in x[1:]:
        res = res + i
    return res


class RetinaNetHead(nn.Module):
    """
    A regression and classification head for use in RetinaNet.

34
    Args:
35
36
37
38
39
40
41
42
43
44
45
46
47
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
        num_classes (int): number of classes to be predicted
    """

    def __init__(self, in_channels, num_anchors, num_classes):
        super().__init__()
        self.classification_head = RetinaNetClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = RetinaNetRegressionHead(in_channels, num_anchors)

    def compute_loss(self, targets, head_outputs, anchors, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Dict[str, Tensor]
        return {
48
49
            "classification": self.classification_head.compute_loss(targets, head_outputs, matched_idxs),
            "bbox_regression": self.regression_head.compute_loss(targets, head_outputs, anchors, matched_idxs),
50
51
52
53
        }

    def forward(self, x):
        # type: (List[Tensor]) -> Dict[str, Tensor]
54
        return {"cls_logits": self.classification_head(x), "bbox_regression": self.regression_head(x)}
55
56
57
58
59
60


class RetinaNetClassificationHead(nn.Module):
    """
    A classification head for use in RetinaNet.

61
    Args:
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
        num_classes (int): number of classes to be predicted
    """

    def __init__(self, in_channels, num_anchors, num_classes, prior_probability=0.01):
        super().__init__()

        conv = []
        for _ in range(4):
            conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            conv.append(nn.ReLU())
        self.conv = nn.Sequential(*conv)

        for layer in self.conv.children():
            if isinstance(layer, nn.Conv2d):
                torch.nn.init.normal_(layer.weight, std=0.01)
                torch.nn.init.constant_(layer.bias, 0)

        self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
        torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
        torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability))

        self.num_classes = num_classes
        self.num_anchors = num_anchors

        # This is to fix using det_utils.Matcher.BETWEEN_THRESHOLDS in TorchScript.
        # TorchScript doesn't support class attributes.
        # https://github.com/pytorch/vision/pull/1697#issuecomment-630255584
        self.BETWEEN_THRESHOLDS = det_utils.Matcher.BETWEEN_THRESHOLDS

    def compute_loss(self, targets, head_outputs, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Tensor
        losses = []

97
        cls_logits = head_outputs["cls_logits"]
98
99
100
101
102

        for targets_per_image, cls_logits_per_image, matched_idxs_per_image in zip(targets, cls_logits, matched_idxs):
            # determine only the foreground
            foreground_idxs_per_image = matched_idxs_per_image >= 0
            num_foreground = foreground_idxs_per_image.sum()
103
104
105
106
107

            # create the target classification
            gt_classes_target = torch.zeros_like(cls_logits_per_image)
            gt_classes_target[
                foreground_idxs_per_image,
108
                targets_per_image["labels"][matched_idxs_per_image[foreground_idxs_per_image]],
109
110
111
112
            ] = 1.0

            # find indices for which anchors should be ignored
            valid_idxs_per_image = matched_idxs_per_image != self.BETWEEN_THRESHOLDS
113
114

            # compute the classification loss
115
116
117
118
119
120
121
122
            losses.append(
                sigmoid_focal_loss(
                    cls_logits_per_image[valid_idxs_per_image],
                    gt_classes_target[valid_idxs_per_image],
                    reduction="sum",
                )
                / max(1, num_foreground)
            )
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        return _sum(losses) / len(targets)

    def forward(self, x):
        # type: (List[Tensor]) -> Tensor
        all_cls_logits = []

        for features in x:
            cls_logits = self.conv(features)
            cls_logits = self.cls_logits(cls_logits)

            # Permute classification output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = cls_logits.shape
            cls_logits = cls_logits.view(N, -1, self.num_classes, H, W)
            cls_logits = cls_logits.permute(0, 3, 4, 1, 2)
            cls_logits = cls_logits.reshape(N, -1, self.num_classes)  # Size=(N, HWA, 4)

            all_cls_logits.append(cls_logits)

        return torch.cat(all_cls_logits, dim=1)


class RetinaNetRegressionHead(nn.Module):
    """
    A regression head for use in RetinaNet.

149
    Args:
150
151
152
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
    """
153

154
    __annotations__ = {
155
        "box_coder": det_utils.BoxCoder,
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    }

    def __init__(self, in_channels, num_anchors):
        super().__init__()

        conv = []
        for _ in range(4):
            conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            conv.append(nn.ReLU())
        self.conv = nn.Sequential(*conv)

        self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
        torch.nn.init.normal_(self.bbox_reg.weight, std=0.01)
        torch.nn.init.zeros_(self.bbox_reg.bias)

        for layer in self.conv.children():
            if isinstance(layer, nn.Conv2d):
                torch.nn.init.normal_(layer.weight, std=0.01)
                torch.nn.init.zeros_(layer.bias)

        self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

    def compute_loss(self, targets, head_outputs, anchors, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Tensor
        losses = []

182
        bbox_regression = head_outputs["bbox_regression"]
183

184
185
186
        for targets_per_image, bbox_regression_per_image, anchors_per_image, matched_idxs_per_image in zip(
            targets, bbox_regression, anchors, matched_idxs
        ):
187
            # determine only the foreground indices, ignore the rest
188
189
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            num_foreground = foreground_idxs_per_image.numel()
190
191

            # select only the foreground boxes
192
            matched_gt_boxes_per_image = targets_per_image["boxes"][matched_idxs_per_image[foreground_idxs_per_image]]
193
194
195
196
197
198
199
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]

            # compute the regression targets
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)

            # compute the loss
200
201
202
203
            losses.append(
                torch.nn.functional.l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
                / max(1, num_foreground)
            )
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

        return _sum(losses) / max(1, len(targets))

    def forward(self, x):
        # type: (List[Tensor]) -> Tensor
        all_bbox_regression = []

        for features in x:
            bbox_regression = self.conv(features)
            bbox_regression = self.bbox_reg(bbox_regression)

            # Permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4).
            N, _, H, W = bbox_regression.shape
            bbox_regression = bbox_regression.view(N, -1, 4, H, W)
            bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2)
            bbox_regression = bbox_regression.reshape(N, -1, 4)  # Size=(N, HWA, 4)

            all_bbox_regression.append(bbox_regression)

        return torch.cat(all_bbox_regression, dim=1)


class RetinaNet(nn.Module):
    """
    Implements RetinaNet.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
237
238
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
239
240
241
242
243
244
245
246
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
247
248
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
249
250
251
        - labels (Int64Tensor[N]): the predicted labels for each image
        - scores (Tensor[N]): the scores for each prediction

252
    Args:
253
254
255
256
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or an OrderedDict[Tensor].
257
        num_classes (int): number of output classes of the model (including the background).
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        head (nn.Module): Module run on top of the feature pyramid.
            Defaults to a module containing a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training.
276
        topk_candidates (int): Number of best detections to keep before NMS.
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    Example:

        >>> import torch
        >>> import torchvision
        >>> from torchvision.models.detection import RetinaNet
        >>> from torchvision.models.detection.anchor_utils import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # RetinaNet needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the network generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(
298
299
        >>>     sizes=((32, 64, 128, 256, 512),),
        >>>     aspect_ratios=((0.5, 1.0, 2.0),)
300
301
302
303
304
305
306
307
308
309
        >>> )
        >>>
        >>> # put the pieces together inside a RetinaNet model
        >>> model = RetinaNet(backbone,
        >>>                   num_classes=2,
        >>>                   anchor_generator=anchor_generator)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """
310

311
    __annotations__ = {
312
313
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
314
315
    }

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    def __init__(
        self,
        backbone,
        num_classes,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # Anchor parameters
        anchor_generator=None,
        head=None,
        proposal_matcher=None,
        score_thresh=0.05,
        nms_thresh=0.5,
        detections_per_img=300,
        fg_iou_thresh=0.5,
        bg_iou_thresh=0.4,
        topk_candidates=1000,
    ):
336
337
338
339
340
341
        super().__init__()

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
342
343
                "same for all the levels)"
            )
344
345
346
347
348
349
350
        self.backbone = backbone

        assert isinstance(anchor_generator, (AnchorGenerator, type(None)))

        if anchor_generator is None:
            anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
351
            anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        self.anchor_generator = anchor_generator

        if head is None:
            head = RetinaNetHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes)
        self.head = head

        if proposal_matcher is None:
            proposal_matcher = det_utils.Matcher(
                fg_iou_thresh,
                bg_iou_thresh,
                allow_low_quality_matches=True,
            )
        self.proposal_matcher = proposal_matcher

        self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
377
        self.topk_candidates = topk_candidates
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
    def eager_outputs(self, losses, detections):
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        if self.training:
            return losses

        return detections

    def compute_loss(self, targets, head_outputs, anchors):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Dict[str, Tensor]
        matched_idxs = []
        for anchors_per_image, targets_per_image in zip(anchors, targets):
394
395
396
397
            if targets_per_image["boxes"].numel() == 0:
                matched_idxs.append(
                    torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)
                )
398
399
                continue

400
            match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
401
402
403
404
405
            matched_idxs.append(self.proposal_matcher(match_quality_matrix))

        return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs)

    def postprocess_detections(self, head_outputs, anchors, image_shapes):
406
        # type: (Dict[str, List[Tensor]], List[List[Tensor]], List[Tuple[int, int]]) -> List[Dict[str, Tensor]]
407
408
        class_logits = head_outputs["cls_logits"]
        box_regression = head_outputs["bbox_regression"]
409

410
        num_images = len(image_shapes)
411

412
        detections: List[Dict[str, Tensor]] = []
413

414
415
416
417
        for index in range(num_images):
            box_regression_per_image = [br[index] for br in box_regression]
            logits_per_image = [cl[index] for cl in class_logits]
            anchors_per_image, image_shape = anchors[index], image_shapes[index]
418
419
420
421
422

            image_boxes = []
            image_scores = []
            image_labels = []

423
424
425
            for box_regression_per_level, logits_per_level, anchors_per_level in zip(
                box_regression_per_image, logits_per_image, anchors_per_image
            ):
426
427
                num_classes = logits_per_level.shape[-1]

428
                # remove low scoring boxes
429
430
431
432
                scores_per_level = torch.sigmoid(logits_per_level).flatten()
                keep_idxs = scores_per_level > self.score_thresh
                scores_per_level = scores_per_level[keep_idxs]
                topk_idxs = torch.where(keep_idxs)[0]
433

434
435
436
437
                # keep only topk scoring predictions
                num_topk = min(self.topk_candidates, topk_idxs.size(0))
                scores_per_level, idxs = scores_per_level.topk(num_topk)
                topk_idxs = topk_idxs[idxs]
438

439
                anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode="floor")
440
                labels_per_level = topk_idxs % num_classes
441

442
443
444
                boxes_per_level = self.box_coder.decode_single(
                    box_regression_per_level[anchor_idxs], anchors_per_level[anchor_idxs]
                )
445
446
447
448
449
                boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape)

                image_boxes.append(boxes_per_level)
                image_scores.append(scores_per_level)
                image_labels.append(labels_per_level)
450

451
452
453
            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)
454

455
456
            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
457
458
459
460
461
462
463
464
465
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
466
467
468
469
470
471

        return detections

    def forward(self, images, targets=None):
        # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        """
472
        Args:
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            images (list[Tensor]): images to be processed
            targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for target in targets:
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
492
493
494
                        raise ValueError(
                            "Expected target boxes to be a tensor" "of shape [N, 4], got {:}.".format(boxes.shape)
                        )
495
                else:
496
                    raise ValueError("Expected target boxes to be of type " "Tensor, got {:}.".format(type(boxes)))
497
498

        # get the original image sizes
499
        original_image_sizes: List[Tuple[int, int]] = []
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        # TODO: Move this to a function
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    # print the first degenerate box
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
518
519
520
521
                    raise ValueError(
                        "All bounding boxes should have positive height and width."
                        " Found invalid box {} for target at index {}.".format(degen_bb, target_idx)
                    )
522
523
524
525

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
526
            features = OrderedDict([("0", features)])
527
528
529
530
531
532
533
534
535
536
537

        # TODO: Do we want a list or a dict?
        features = list(features.values())

        # compute the retinanet heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
538
        detections: List[Dict[str, Tensor]] = []
539
540
541
542
543
544
        if self.training:
            assert targets is not None

            # compute the losses
            losses = self.compute_loss(targets, head_outputs, anchors)
        else:
545
546
547
548
549
            # recover level sizes
            num_anchors_per_level = [x.size(2) * x.size(3) for x in features]
            HW = 0
            for v in num_anchors_per_level:
                HW += v
550
            HWA = head_outputs["cls_logits"].size(1)
551
552
553
554
555
556
557
558
559
            A = HWA // HW
            num_anchors_per_level = [hw * A for hw in num_anchors_per_level]

            # split outputs per level
            split_head_outputs: Dict[str, List[Tensor]] = {}
            for k in head_outputs:
                split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1))
            split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors]

560
            # compute the detections
561
            detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes)
562
563
564
565
566
567
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("RetinaNet always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
568
            return losses, detections
569
570
571
572
        return self.eager_outputs(losses, detections)


model_urls = {
573
    "retinanet_resnet50_fpn_coco": "https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth",
574
575
576
}


577
578
579
def retinanet_resnet50_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
580
581
582
    """
    Constructs a RetinaNet model with a ResNet-50-FPN backbone.

583
584
    Reference: `"Focal Loss for Dense Object Detection" <https://arxiv.org/abs/1708.02002>`_.

585
586
587
588
589
590
591
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
592

593
594
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
595
596
597
598
599
600
601
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
602
    follows, where ``N`` is the number of detections:
603

604
605
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
606
607
608
609
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
610
611
612
613
614
615
616
617

    Example::

        >>> model = torchvision.models.detection.retinanet_resnet50_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

618
    Args:
619
620
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
621
622
623
624
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
625
    """
626
    trainable_backbone_layers = _validate_trainable_layers(
627
628
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3
    )
629

630
631
632
633
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    # skip P2 because it generates too many anchors (according to their paper)
634
635
636
637
638
639
640
    backbone = resnet_fpn_backbone(
        "resnet50",
        pretrained_backbone,
        returned_layers=[2, 3, 4],
        extra_blocks=LastLevelP6P7(256, 256),
        trainable_layers=trainable_backbone_layers,
    )
641
642
    model = RetinaNet(backbone, num_classes, **kwargs)
    if pretrained:
643
        state_dict = load_state_dict_from_url(model_urls["retinanet_resnet50_fpn_coco"], progress=progress)
644
        model.load_state_dict(state_dict)
645
        overwrite_eps(model, 0.0)
646
    return model