mask_rcnn.py 17.5 KB
Newer Older
1
2
3
4
5
from collections import OrderedDict

from torch import nn
from torchvision.ops import MultiScaleRoIAlign

6
from ..._internally_replaced_utils import load_state_dict_from_url
7
from ._utils import overwrite_eps
8
from .backbone_utils import resnet_fpn_backbone, _validate_trainable_layers
9
from .faster_rcnn import FasterRCNN
10
11

__all__ = [
12
13
    "MaskRCNN",
    "maskrcnn_resnet50_fpn",
14
15
16
17
]


class MaskRCNN(FasterRCNN):
18
19
20
21
22
23
24
25
    """
    Implements Mask R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

26
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
27
    containing:
28
29
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
30
        - labels (Int64Tensor[N]): the class label for each ground-truth box
31
        - masks (UInt8Tensor[N, H, W]): the segmentation binary masks for each instance
32

33
34
35
36
37
38
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN, and the mask loss.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
39
40
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
41
        - labels (Int64Tensor[N]): the predicted labels for each image
42
        - scores (Tensor[N]): the scores or each prediction
43
        - masks (UInt8Tensor[N, 1, H, W]): the predicted masks for each instance, in 0-1 range. In order to
44
45
          obtain the final segmentation masks, the soft masks can be thresholded, generally
          with a value of 0.5 (mask >= 0.5)
46

47
    Args:
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
77
78
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes
        mask_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
             the locations indicated by the bounding boxes, which will be used for the mask head.
        mask_head (nn.Module): module that takes the cropped feature maps as input
        mask_predictor (nn.Module): module that takes the output of the mask_head and returns the
            segmentation mask logits

    Example::

106
        >>> import torch
107
108
        >>> import torchvision
        >>> from torchvision.models.detection import MaskRCNN
109
        >>> from torchvision.models.detection.anchor_utils import AnchorGenerator
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        >>>
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # MaskRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
131
        >>> # be ['0']. More generally, the backbone should return an
132
133
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
134
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
135
136
137
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
138
        >>> mask_roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
139
140
        >>>                                                      output_size=14,
        >>>                                                      sampling_ratio=2)
141
        >>> # put the pieces together inside a MaskRCNN model
142
143
144
145
146
        >>> model = MaskRCNN(backbone,
        >>>                  num_classes=2,
        >>>                  rpn_anchor_generator=anchor_generator,
        >>>                  box_roi_pool=roi_pooler,
        >>>                  mask_roi_pool=mask_roi_pooler)
147
148
149
150
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
        # Mask parameters
        mask_roi_pool=None,
        mask_head=None,
        mask_predictor=None,
    ):
191
192
193
194
195
196
197
198
199
200

        assert isinstance(mask_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:
            if mask_predictor is not None:
                raise ValueError("num_classes should be None when mask_predictor is specified")

        out_channels = backbone.out_channels

        if mask_roi_pool is None:
201
            mask_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=14, sampling_ratio=2)
202
203
204
205
206
207
208

        if mask_head is None:
            mask_layers = (256, 256, 256, 256)
            mask_dilation = 1
            mask_head = MaskRCNNHeads(out_channels, mask_layers, mask_dilation)

        if mask_predictor is None:
209
210
            mask_predictor_in_channels = 256  # == mask_layers[-1]
            mask_dim_reduced = 256
211
            mask_predictor = MaskRCNNPredictor(mask_predictor_in_channels, mask_dim_reduced, num_classes)
212
213

        super(MaskRCNN, self).__init__(
214
215
            backbone,
            num_classes,
216
            # transform parameters
217
218
219
220
            min_size,
            max_size,
            image_mean,
            image_std,
221
            # RPN-specific parameters
222
223
224
225
226
227
            rpn_anchor_generator,
            rpn_head,
            rpn_pre_nms_top_n_train,
            rpn_pre_nms_top_n_test,
            rpn_post_nms_top_n_train,
            rpn_post_nms_top_n_test,
228
            rpn_nms_thresh,
229
230
231
232
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
233
            rpn_score_thresh,
234
            # Box parameters
235
236
237
238
239
240
241
242
243
244
245
246
            box_roi_pool,
            box_head,
            box_predictor,
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
            bbox_reg_weights,
        )
247
248
249
250
251
252
253
254
255

        self.roi_heads.mask_roi_pool = mask_roi_pool
        self.roi_heads.mask_head = mask_head
        self.roi_heads.mask_predictor = mask_predictor


class MaskRCNNHeads(nn.Sequential):
    def __init__(self, in_channels, layers, dilation):
        """
256
        Args:
257
258
259
            in_channels (int): number of input channels
            layers (list): feature dimensions of each FCN layer
            dilation (int): dilation rate of kernel
260
261
262
263
        """
        d = OrderedDict()
        next_feature = in_channels
        for layer_idx, layer_features in enumerate(layers, 1):
264
            d["mask_fcn{}".format(layer_idx)] = nn.Conv2d(
265
266
                next_feature, layer_features, kernel_size=3, stride=1, padding=dilation, dilation=dilation
            )
267
268
269
270
271
272
273
274
275
276
277
            d["relu{}".format(layer_idx)] = nn.ReLU(inplace=True)
            next_feature = layer_features

        super(MaskRCNNHeads, self).__init__(d)
        for name, param in self.named_parameters():
            if "weight" in name:
                nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu")
            # elif "bias" in name:
            #     nn.init.constant_(param, 0)


278
class MaskRCNNPredictor(nn.Sequential):
279
    def __init__(self, in_channels, dim_reduced, num_classes):
280
281
282
283
284
285
286
287
288
        super(MaskRCNNPredictor, self).__init__(
            OrderedDict(
                [
                    ("conv5_mask", nn.ConvTranspose2d(in_channels, dim_reduced, 2, 2, 0)),
                    ("relu", nn.ReLU(inplace=True)),
                    ("mask_fcn_logits", nn.Conv2d(dim_reduced, num_classes, 1, 1, 0)),
                ]
            )
        )
289
290
291
292
293
294
295
296

        for name, param in self.named_parameters():
            if "weight" in name:
                nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu")
            # elif "bias" in name:
            #     nn.init.constant_(param, 0)


297
model_urls = {
298
    "maskrcnn_resnet50_fpn_coco": "https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth",
299
300
301
}


302
303
304
def maskrcnn_resnet50_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
305
306
307
    """
    Constructs a Mask R-CNN model with a ResNet-50-FPN backbone.

308
309
    Reference: `"Mask R-CNN" <https://arxiv.org/abs/1703.06870>`_.

310
311
312
313
314
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

315
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
316
    containing:
317

318
319
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
320
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
321
        - masks (``UInt8Tensor[N, H, W]``): the segmentation binary masks for each instance
322
323
324
325
326
327

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN, and the mask loss.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
328
    follows, where ``N`` is the number of detected instances:
329

330
331
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
332
333
        - labels (``Int64Tensor[N]``): the predicted labels for each instance
        - scores (``Tensor[N]``): the scores or each instance
334
        - masks (``UInt8Tensor[N, 1, H, W]``): the predicted masks for each instance, in ``0-1`` range. In order to
335
336
337
          obtain the final segmentation masks, the soft masks can be thresholded, generally
          with a value of 0.5 (``mask >= 0.5``)

338
339
    For more details on the output and on how to plot the masks, you may refer to :ref:`instance_seg_output`.

340
341
    Mask R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

342
343
344
345
346
347
    Example::

        >>> model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
348
349
350
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "mask_rcnn.onnx", opset_version = 11)
351

352
    Args:
353
354
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
355
        num_classes (int): number of output classes of the model (including the background)
356
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
357
358
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
359
    """
360
    trainable_backbone_layers = _validate_trainable_layers(
361
362
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3
    )
363

364
365
366
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
367
    backbone = resnet_fpn_backbone("resnet50", pretrained_backbone, trainable_layers=trainable_backbone_layers)
368
369
    model = MaskRCNN(backbone, num_classes, **kwargs)
    if pretrained:
370
        state_dict = load_state_dict_from_url(model_urls["maskrcnn_resnet50_fpn_coco"], progress=progress)
371
        model.load_state_dict(state_dict)
372
        overwrite_eps(model, 0.0)
373
    return model