generalized_rcnn.py 4.35 KB
Newer Older
1
2
3
4
"""
Implements the Generalized R-CNN framework
"""

5
import warnings
6
from collections import OrderedDict
7
8
from typing import Tuple, List, Dict, Optional, Union

9
import torch
10
from torch import nn, Tensor
11
12
13
14
15
16


class GeneralizedRCNN(nn.Module):
    """
    Main class for Generalized R-CNN.

17
    Args:
18
19
        backbone (nn.Module):
        rpn (nn.Module):
20
        roi_heads (nn.Module): takes the features + the proposals from the RPN and computes
21
22
23
24
25
26
27
28
29
30
31
            detections / masks from it.
        transform (nn.Module): performs the data transformation from the inputs to feed into
            the model
    """

    def __init__(self, backbone, rpn, roi_heads, transform):
        super(GeneralizedRCNN, self).__init__()
        self.transform = transform
        self.backbone = backbone
        self.rpn = rpn
        self.roi_heads = roi_heads
32
33
        # used only on torchscript mode
        self._has_warned = False
34

eellison's avatar
eellison committed
35
36
    @torch.jit.unused
    def eager_outputs(self, losses, detections):
37
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]]
eellison's avatar
eellison committed
38
39
40
41
42
        if self.training:
            return losses

        return detections

43
    def forward(self, images, targets=None):
44
        # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
45
        """
46
        Args:
47
48
49
50
51
52
53
54
55
56
57
58
            images (list[Tensor]): images to be processed
            targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")
59
60
61
62
63
64
        if self.training:
            assert targets is not None
            for target in targets:
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
65
66
67
                        raise ValueError(
                            "Expected target boxes to be a tensor" "of shape [N, 4], got {:}.".format(boxes.shape)
                        )
68
                else:
69
                    raise ValueError("Expected target boxes to be of type " "Tensor, got {:}.".format(type(boxes)))
70

71
        original_image_sizes: List[Tuple[int, int]] = []
eellison's avatar
eellison committed
72
73
74
75
76
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2
            original_image_sizes.append((val[0], val[1]))

77
        images, targets = self.transform(images, targets)
78
79
80
81
82
83
84
85

        # Check for degenerate boxes
        # TODO: Move this to a function
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
86
                    # print the first degenerate box
87
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
88
                    degen_bb: List[float] = boxes[bb_idx].tolist()
89
90
91
92
                    raise ValueError(
                        "All bounding boxes should have positive height and width."
                        " Found invalid box {} for target at index {}.".format(degen_bb, target_idx)
                    )
93

94
95
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
96
            features = OrderedDict([("0", features)])
97
98
99
100
101
102
103
104
        proposals, proposal_losses = self.rpn(images, features, targets)
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)

eellison's avatar
eellison committed
105
        if torch.jit.is_scripting():
106
107
108
            if not self._has_warned:
                warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
109
            return losses, detections
eellison's avatar
eellison committed
110
111
        else:
            return self.eager_outputs(losses, detections)