faster_rcnn.py 22.3 KB
Newer Older
1
import torch.nn.functional as F
2
from torch import nn
3
4
from torchvision.ops import MultiScaleRoIAlign

5
from ..._internally_replaced_utils import load_state_dict_from_url
6
from ._utils import overwrite_eps
7
from .anchor_utils import AnchorGenerator
8
from .backbone_utils import resnet_fpn_backbone, _validate_trainable_layers, mobilenet_backbone
9
10
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
11
from .rpn import RPNHead, RegionProposalNetwork
12
13
14
15
from .transform import GeneralizedRCNNTransform


__all__ = [
16
17
18
19
    "FasterRCNN",
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_mobilenet_v3_large_320_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn",
20
21
22
23
]


class FasterRCNN(GeneralizedRCNN):
24
25
26
27
28
29
30
31
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

32
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
33
    containing:
34
35
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
36
        - labels (Int64Tensor[N]): the class label for each ground-truth box
37

38
39
40
41
42
43
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
44
45
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
46
        - labels (Int64Tensor[N]): the predicted labels for each image
47
        - scores (Tensor[N]): the scores or each prediction
48

49
    Args:
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
79
80
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
103
        >>> import torch
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
127
        >>> # be ['0']. More generally, the backbone should return an
128
129
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
130
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
131
132
133
134
135
136
137
138
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
139
140
141
142
143
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
    ):
179
180
181
182
183

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
184
185
                "same for all the levels)"
            )
186
187
188
189
190
191
192
193
194

        assert isinstance(rpn_anchor_generator, (AnchorGenerator, type(None)))
        assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
195
                raise ValueError("num_classes should not be None when box_predictor " "is not specified")
196
197
198
199
200
201

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
202
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
203
        if rpn_head is None:
204
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
205
206
207
208
209

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
210
211
212
213
214
215
216
217
218
219
220
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
221
222

        if box_roi_pool is None:
223
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
224
225
226
227

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
228
            box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
229
230
231

        if box_predictor is None:
            representation_size = 1024
232
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
233
234
235

        roi_heads = RoIHeads(
            # Box
236
237
238
239
240
241
242
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
243
            bbox_reg_weights,
244
245
246
247
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
248
249
250
251
252
253
254
255
256
257
258
259

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        super(FasterRCNN, self).__init__(backbone, rpn, roi_heads, transform)


class TwoMLPHead(nn.Module):
    """
260
261
    Standard heads for FPN-based models

262
    Args:
263
264
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    """

    def __init__(self, in_channels, representation_size):
        super(TwoMLPHead, self).__init__()

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
283
284
285
286
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

287
    Args:
288
289
290
291
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

292
293
294
295
296
297
    def __init__(self, in_channels, num_classes):
        super(FastRCNNPredictor, self).__init__()
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
298
        if x.dim() == 4:
299
300
301
302
303
304
305
306
            assert list(x.shape[2:]) == [1, 1]
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


307
model_urls = {
308
309
310
    "fasterrcnn_resnet50_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
    "fasterrcnn_mobilenet_v3_large_320_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
    "fasterrcnn_mobilenet_v3_large_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
311
312
313
}


314
315
316
def fasterrcnn_resnet50_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
317
318
319
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

320
321
322
    Reference: `"Faster R-CNN: Towards Real-Time Object Detection with
    Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.

323
324
325
326
327
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

328
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
329
    containing:
330

331
332
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
333
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
334
335
336
337
338
339

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
340
    follows, where ``N`` is the number of detections:
341

342
343
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
344
345
346
347
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
348

349
350
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

351
352
353
    Example::

        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
354
355
356
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
        >>> labels = torch.randint(1, 91, (4, 11))
357
        >>> images = list(image for image in images)
358
        >>> targets = []
359
360
361
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
362
        >>>     d['labels'] = labels[i]
363
        >>>     targets.append(d)
364
365
366
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
367
368
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
369
370
371
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
372

373
    Args:
374
375
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
376
        num_classes (int): number of output classes of the model (including the background)
377
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
378
379
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
380
    """
381
    trainable_backbone_layers = _validate_trainable_layers(
382
383
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3
    )
384

385
386
387
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
388
    backbone = resnet_fpn_backbone("resnet50", pretrained_backbone, trainable_layers=trainable_backbone_layers)
389
390
    model = FasterRCNN(backbone, num_classes, **kwargs)
    if pretrained:
391
        state_dict = load_state_dict_from_url(model_urls["fasterrcnn_resnet50_fpn_coco"], progress=progress)
392
        model.load_state_dict(state_dict)
393
        overwrite_eps(model, 0.0)
394
    return model
395
396


397
398
399
400
401
402
403
404
405
def _fasterrcnn_mobilenet_v3_large_fpn(
    weights_name,
    pretrained=False,
    progress=True,
    num_classes=91,
    pretrained_backbone=True,
    trainable_backbone_layers=None,
    **kwargs,
):
406
    trainable_backbone_layers = _validate_trainable_layers(
407
408
        pretrained or pretrained_backbone, trainable_backbone_layers, 6, 3
    )
409
410
411

    if pretrained:
        pretrained_backbone = False
412
413
414
415
416
417
418
419
420
421
422
423
424
    backbone = mobilenet_backbone(
        "mobilenet_v3_large", pretrained_backbone, True, trainable_layers=trainable_backbone_layers
    )

    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
425
426
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)

427
428
429
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
430
431
432
433
434
435
436
437
    if pretrained:
        if model_urls.get(weights_name, None) is None:
            raise ValueError("No checkpoint is available for model {}".format(weights_name))
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model


438
439
440
def fasterrcnn_mobilenet_v3_large_320_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
441
    """
442
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
443
444
445
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
446
447
448

    Example::

449
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)
450
451
452
453
454
455
456
457
458
459
460
461
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
    """
462
463
464
465
466
467
468
469
    weights_name = "fasterrcnn_mobilenet_v3_large_320_fpn_coco"
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
470

471
    kwargs = {**defaults, **kwargs}
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights_name,
        pretrained=pretrained,
        progress=progress,
        num_classes=num_classes,
        pretrained_backbone=pretrained_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


def fasterrcnn_mobilenet_v3_large_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
486
487
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
488
489
490
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

    Example::

        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
    """
    weights_name = "fasterrcnn_mobilenet_v3_large_fpn_coco"
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
513
514
515
516
517
518
519
520
521
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights_name,
        pretrained=pretrained,
        progress=progress,
        num_classes=num_classes,
        pretrained_backbone=pretrained_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )