ROIAlign_cuda.cu 12.6 KB
Newer Older
1
2
3
4
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
5
#include <THC/THCAtomics.cuh>
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

#include "cuda_helpers.h"

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
    const int height,
    const int width,
    T y,
    T x,
    const int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
__global__ void RoIAlignForward(
    const int nthreads,
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
AhnDW's avatar
AhnDW committed
74
    const bool aligned,
75
76
77
78
79
80
81
82
83
84
85
86
87
    const T* rois,
    T* output) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
88
89
90
91
92
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
93

94
95
96
97
98
99
100
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = max(roi_width, (T)1.);
      roi_height = max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
AhnDW's avatar
AhnDW committed
116
117
    // When the grid is empty, output zeros.
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    output[index] = output_val;
  }
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
    const int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

template <typename T>
__global__ void RoIAlignBackward(
    const int nthreads,
    const T* grad_output,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
AhnDW's avatar
AhnDW committed
212
    const bool aligned,
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    T* grad_input,
    const T* rois,
    const int n_stride,
    const int c_stride,
    const int h_stride,
    const int w_stride) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
230
231
232
233
234
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
235

236
237
238
239
240
241
242
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = max(roi_width, (T)1.);
      roi_height = max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_grad_input =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    // We need to index the gradient using the tensor strides to access the
    // correct values.
    int output_offset = n * n_stride + c * c_stride;
    const T* offset_grad_output = grad_output + output_offset;
    const T grad_output_this_bin =
        offset_grad_output[ph * h_stride + pw * w_stride];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          atomicAdd(
              offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
          atomicAdd(
              offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
          atomicAdd(
              offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
          atomicAdd(
              offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
} // RoIAlignBackward

at::Tensor ROIAlign_forward_cuda(
    const at::Tensor& input,
    const at::Tensor& rois,
318
319
320
321
    const double spatial_scale,
    const int64_t pooled_height,
    const int64_t pooled_width,
    const int64_t sampling_ratio,
AhnDW's avatar
AhnDW committed
322
    const bool aligned) {
323
324
  AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.is_cuda(), "rois must be a CUDA tensor");
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlign_forward_cuda";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());

  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
345
  dim3 grid(std::min(
346
    ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
347
      static_cast<int64_t>(4096)));
348
349
350
351
352
353
354
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return output;
  }

355
356
  auto input_ = input.contiguous(),
       rois_ = rois.contiguous();
357
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "ROIAlign_forward", [&] {
358
359
    RoIAlignForward<scalar_t><<<grid, block, 0, stream>>>(
        output_size,
360
        input_.data_ptr<scalar_t>(),
361
362
363
364
365
366
367
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
        sampling_ratio,
AhnDW's avatar
AhnDW committed
368
        aligned,
369
        rois_.data_ptr<scalar_t>(),
370
        output.data_ptr<scalar_t>());
371
372
373
374
375
376
377
378
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return output;
}

at::Tensor ROIAlign_backward_cuda(
    const at::Tensor& grad,
    const at::Tensor& rois,
379
380
381
382
383
384
385
386
    const double spatial_scale,
    const int64_t pooled_height,
    const int64_t pooled_width,
    const int64_t batch_size,
    const int64_t channels,
    const int64_t height,
    const int64_t width,
    const int64_t sampling_ratio,
AhnDW's avatar
AhnDW committed
387
    const bool aligned) {
388
389
  AT_ASSERTM(grad.is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.is_cuda(), "rois must be a CUDA tensor");
390
391
392
393
394
395
396
397
398
399
400
401
402
403

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlign_backward_cuda";
  at::checkAllSameGPU(c, {grad_t, rois_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
404
  dim3 grid(std::min(
405
    ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
406
      static_cast<int64_t>(4096)));
407
408
409
410
411
412
413
414
415
416
417
418
419
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

420
  auto rois_ = rois.contiguous();
421
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.scalar_type(), "ROIAlign_backward", [&] {
422
423
    RoIAlignBackward<scalar_t><<<grid, block, 0, stream>>>(
        grad.numel(),
424
        grad.data_ptr<scalar_t>(),
425
426
427
428
429
430
431
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
        sampling_ratio,
AhnDW's avatar
AhnDW committed
432
        aligned,
433
        grad_input.data_ptr<scalar_t>(),
434
        rois_.data_ptr<scalar_t>(),
435
436
437
438
439
440
441
442
        n_stride,
        c_stride,
        h_stride,
        w_stride);
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}